Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Bisphenol A in combination with TNF-α selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity

Abstract

Bisphenol A (BPA) is a monomer used in manufacturing a wide range of chemical products, including epoxy resins and polycarbonate. BPA, an important endocrine disrupting chemical that exerts estrogen-like activities, is detectable at nanomolar levels in human serum worldwide. The pregnancy associated doses of 17β-estradiol (E2) plus tumor-necrosis factor-α (TNF-α) induce distorted maturation of human dendritic cells (DCs) that result in an increased capacity to induce T helper (Th) 2 responses. The current study demonstrated that the presence of BPA during DC maturation influences the function of human DCs, thereby polarizing the subsequent Th response. In the presence of TNF-α, BPA treatment enhanced the expression of CC chemokine ligand 1 (CCL1) in DCs. In addition, DCs exposed to BPA/TNF-α produced higher levels of IL-10 relative to those of IL-12p70 on CD40 ligation, and preferentially induced Th2 deviation. BPA exerts the same effect with E2 at the same dose (0.01–0.1 µΜ) with regard to DC-mediated Th2 polarization. These findings imply that DCs exposed to BPA will provide one of the initial signals driving the development and perpetuation of Th2-dominated immune response in allergic reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ring J, Kramer U, Schafer T, Behrendt H . Why are allergies increasing? Curr Opin Immunol 2001; 13: 701–708.

    Article  CAS  Google Scholar 

  2. McGeady SJ . Immunocompetence and allergy. Pediatrics 2004; 113: 1107–1113.

    PubMed  Google Scholar 

  3. Safe SH . Environmental and dietary estrogens and human health: is there a problem? Environ Health Perspect 1995; 103: 346–351.

    Article  CAS  Google Scholar 

  4. Kelce WR, Wilson EM . Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J Mol Med 1997; 75: 198–207.

    Article  CAS  Google Scholar 

  5. Ohshima Y, Yamada A, Tokuriki S, Yasutomi M, Omata N, Mayumi M . Transmaternal exposure to bisphenol A modulates the development of oral tolerance. Pediatr Res 2007; 62: 60–64.

    Article  CAS  Google Scholar 

  6. vom Saal FS, Hughes C . An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 2005; 113: 926–933.

    Article  CAS  Google Scholar 

  7. Le HH, Carlson EM, Chua JP, Belcher SM . Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 2008; 176: 149–156.

    Article  CAS  Google Scholar 

  8. Welshons WV, Nagel SC, vom Saal FS . Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 2006; 147: S56–S69.

    Article  CAS  Google Scholar 

  9. Witorsch RJ . Low-dose in utero effects of xenoestrogens in mice and their relevance to humans: an analytical review of the literature. Food Chem Toxicol 2002; 40: 905–912.

    Article  CAS  Google Scholar 

  10. Kurosawa T, Hiroi H, Tsutsumi O, Ishikawa T, Osuga Y, Fujiwara T et al. The activity of bisphenol A depends on both the estrogen receptor subtype and the cell type. Endocr J 2002; 49: 465–471.

    Article  CAS  Google Scholar 

  11. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ . Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 2008; 70: 165–190.

    Article  CAS  Google Scholar 

  12. Singleton DW, Feng Y, Chen Y, Busch SJ, Lee AV, Puga A et al. Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol 2004; 221: 47–55.

    Article  CAS  Google Scholar 

  13. Singleton DW, Feng Y, Yang J, Puga A, Lee AV, Khan SA . Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-alpha-positive human cells. Environ Res 2006; 100: 86–92.

    Article  CAS  Google Scholar 

  14. Goto M, Takano-Ishikawa Y, Ono H, Yoshida M, Yamaki K, Shinmoto H . Orally administered bisphenol A disturbed antigen specific immunoresponses in the naive condition. Biosci Biotechnol Biochem 2007; 71: 2136–2143.

    Article  CAS  Google Scholar 

  15. Ohshima Y, Yamada A, Tokuriki S, Yasutomi M, Omata N, Mayumi M . Transmaternal exposure to bisphenol A modulates the development of oral tolerance. Pediatr Res 2007; 62: 60–64.

    Article  CAS  Google Scholar 

  16. Yan H, Takamoto M, Sugane K . Exposure to Bisphenol A prenatally or in adulthood promotes TH2 cytokine production associated with reduction of CD4+CD25+ regulatory T cells. Environ Health Perspect 2008; 116: 514–519.

    Article  CAS  Google Scholar 

  17. Tian X, Takamoto M, Sugane K . Bisphenol A promotes IL-4 production by Th2 cells. Int Arch Allergy Immunol 2003; 132: 240–247.

    Article  CAS  Google Scholar 

  18. Yoshino S, Yamaki K, Yanagisawa R, Takano H, Hayashi H, Mori Y . Effects of bisphenol A on antigen-specific antibody production, proliferative responses of lymphoid cells, and TH1 and TH2 immune responses in mice. Br J Pharmacol 2003; 138: 1271–1276.

    Article  CAS  Google Scholar 

  19. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  20. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML . T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999; 20: 561–567.

    Article  CAS  Google Scholar 

  21. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950–957.

    Article  CAS  Google Scholar 

  22. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007; 27: 660–669.

    Article  CAS  Google Scholar 

  23. Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 cells. Annu Rev Immunol 2009; 27: 485–517.

    Article  CAS  Google Scholar 

  24. Kapsenberg ML . Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003; 3: 984–993.

    Article  CAS  Google Scholar 

  25. Liu TY, Uemura Y, Suzuki M, Narita Y, Hirata S, Ohyama H et al. Distinct subsets of human invariant NKT cells differentially regulate T helper responses via dendritic cells. Eur J Immunol 2008; 38: 1012–1023.

    Article  CAS  Google Scholar 

  26. Aste-Amezaga M, Ma X, Sartori A, Trinchieri G . Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J Immunol 1998; 160: 5936–5944.

    CAS  PubMed  Google Scholar 

  27. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 2008; 454: 350–352.

    Article  CAS  Google Scholar 

  28. Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 2005; 201: 627–636.

    Article  CAS  Google Scholar 

  29. Ohtani T, Nakagawa S, Kurosawa M, Mizuashi M, Ozawa M, Aiba S . Cellular basis of the role of diesel exhaust particles in inducing Th2-dominant response. J Immunol 2005; 174: 2412–2419.

    Article  CAS  Google Scholar 

  30. Sasaki Y, Ohtani T, Ito Y, Mizuashi M, Nakagawa S, Furukawa T et al. Molecular events in human T cells treated with diesel exhaust particles or formaldehyde that underlie their diminished interferon-gamma and interleukin-10 production. Int Arch Allergy Immunol 2009; 148: 239–250.

    Article  CAS  Google Scholar 

  31. Uemura Y, Liu TY, Narita Y, Suzuki M, Matsushita S . 17 beta-estradiol (E2) plus tumor necrosis factor-alpha induces a distorted maturation of human monocytes-derived dendritic cells and promotes their capacity to initiate T-helper 2 responses. Hum Immunol 2008; 69: 149–157.

    Article  CAS  Google Scholar 

  32. Uemura Y, Liu TY, Narita Y, Suzuki M, Ohshima S, Muzukami S et al. Identification of functional type 1 ryanodine receptors in human dendritic cells. Biochem Biophys Res Commun 2007; 362: 510–515.

    Article  CAS  Google Scholar 

  33. Uemura Y, Suzuki M, Liu TY, Narita Y, Hirata S, Ohyama H et al. Role of human non-invariant NKT lymphocytes in the maintenance of type 2 T helper environment during pregnancy. Int Immunol 2008; 20: 405–412.

    Article  CAS  Google Scholar 

  34. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F . Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000; 1: 311–316.

    Article  CAS  Google Scholar 

  35. de Jong EC, Vieira PL, Kalinski P, Schuitemaker JH, Tanaka Y, Wierenga EA et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals. J Immunol 2002; 168: 1704–1709.

    Article  CAS  Google Scholar 

  36. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998; 139: 4252–4263.

    Article  CAS  Google Scholar 

  37. Safe SH, Pallaroni L, Yoon K, Gaido K, Ross S, McDonnell D . Problems for risk assessment of endocrine-active estrogenic compounds. Environ Health Perspect 2002; 110: 925–929.

    Article  CAS  Google Scholar 

  38. Watson CS, Bulayeva NN, Wozniak AL, Finnerty CC . Signaling from the membrane via membrane estrogen receptor-alpha: estrogens, xenoestrogens, and phytoestrogens. Steroids 2005; 70: 364–371.

    Article  CAS  Google Scholar 

  39. Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect 2005; 113: 969–977.

    Article  CAS  Google Scholar 

  40. Thomas P, Dong J . Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 2006; 102: 175–179.

    Article  CAS  Google Scholar 

  41. Compbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H . Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptoralpha: a new model for anti-estrogen resistance. J Biol Chem 2001; 276: 9817–9824.

    Article  Google Scholar 

  42. McDonnell DP, Norris JD . Connections and regulation of the human estrogen receptor. Science 2002; 296: 1642–1644.

    Article  CAS  Google Scholar 

  43. Gombert M, Dieu-Nosjean MC, Winterberg F, Bunemann E, Kubitza RC, Da Cunha L et al. CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 2005; 174: 5082–5091.

    Article  CAS  Google Scholar 

  44. Ruckes T, Saul D, van Snick J, Hermine O, Grassmann R . Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309. Blood 2001; 98: 1150–1159.

    Article  CAS  Google Scholar 

  45. Moser M, Murphy KM . Dendritic cell regulation of TH1-TH2 development. Nat Immunol 2000; 1: 199–205.

    Article  CAS  Google Scholar 

  46. Roses RE, Xu S, Xu M, Koldovsky U, Koski G, Czerniecki BJ . Differential production of IL-23 and IL-12 by myeloid-derived dendritic cells in response to TLR agonists. J Immunol 2008; 181: 5120–5127.

    Article  CAS  Google Scholar 

  47. Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med 2008; 205: 1447–1461.

    Article  CAS  Google Scholar 

  48. Uemura Y, Liu TY, Narita Y, Suzuki M, Nakatsuka R, Araki T et al. Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Valpha24 invariant NKT cells. J Immunol 2009; 183: 201–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Nursing Foundation for Science Development and Innovation 09KMM06 from Chinese PLA General Hospital, Grants-in-Aid 21791572, 21791473 and 20591190 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and research grants from the Kansai Medical University (Research grant C), the Osaka Cancer Research Foundation (2010), and the Princess Takamatsu Cancer Research Fund (09-24104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyi Liu or Yasushi Uemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Liu, T., Uemura, Y. et al. Bisphenol A in combination with TNF-α selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity. Cell Mol Immunol 7, 227–234 (2010). https://doi.org/10.1038/cmi.2010.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.14

Keywords

This article is cited by

Search

Quick links