Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions

Abstract

Immunoglobulin superfamily (IgSF) members account for a large proportion of cell adhesion molecules that perform important immunological functions, including recognizing a variety of counterpart molecules on the cell surface or extracellular matrix. The findings that CD155/poliovirus receptor (PVR) and CD112/nectin-2 are the ligands for CD226/platelet and T-cell activation antigen 1 (PTA1)/DNAX accessory molecular-1 (DNAM-1), CD96/tactile and Washington University cell adhesion molecule (WUCAM) and that CD226 is physically and functionally associated with lymphocyte function-associated antigen-1 (LFA-1) on natural killer (NK) and activated T cells have largely expanded our knowledge about the functions of CD226, CD96, WUCAM and LFA-1 and their respective ligands, CD155, CD112, intercellular adhesion molecule (ICAM)-1 and junctional adhesion molecule (JAM)-1. The interactions of these receptors and their ligands are involved in many key functions of immune cells including naive T cells, cytotoxic T cells, NK cells, NK T cells, monocytes, dendritic cells, mast cells and platelets/megakaryocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Williams AF, Barclay AN . The immunoglobulin superfamily – domains for cell surface recognition. Annu Rev Immunol 1988; 6: 381–405.

    Article  CAS  Google Scholar 

  2. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W . Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 2003; 94: 655–667.

    Article  CAS  Google Scholar 

  3. Available from: http://www.hlda8.org

  4. Reymond N, Fabre S, Lecocq E, Adelaide J, Dubreuil P, Lopez M . Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem 2001; 276: 43205–43215.

    Article  CAS  Google Scholar 

  5. Mueller S, Wimmer E . Recruitment of nectin-3 to cell–cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to alphavbeta3 integrin-containing membrane microdomains. J Biol Chem 2003; 278: 31251–31260.

    Article  CAS  Google Scholar 

  6. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, et al. Overexpression of the CD155 gene in human colorectal carcinoma. Gut 2001; 49: 236–240.

    Article  CAS  Google Scholar 

  7. Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C, Simeone M, et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 2004; 4: 73.

    Article  Google Scholar 

  8. Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L, Imhof BA . Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 2001; 98: 3699–3707.

    Article  CAS  Google Scholar 

  9. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C . JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 2002; 3: 151–158.

    Article  CAS  Google Scholar 

  10. Muller WA . Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 2003; 24: 327–334.

    CAS  PubMed  Google Scholar 

  11. Naik UP, Eckfeld K . Junctional adhesion molecule 1 (JAM-1). J Biol Regul Homeost Agents 2003; 17: 341–347.

    CAS  PubMed  Google Scholar 

  12. Naik MU, Mousa SA, Parkos CA, Naik UP . Signaling through JAM-1 and alphavbeta3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and alphavbeta3 complex. Blood 2003; 102: 2108–2114.

    Article  CAS  Google Scholar 

  13. Burns GF, Triglia T, Werkmeister JA, Begley CG, Boyd AW . TLiSA1, a human T lineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and anomalous killer cells from their precursors. J Exp Med 1985; 161: 1063–1078.

    Article  CAS  Google Scholar 

  14. Scott JL, Dunn SM, Jin B, Hillam AJ, Walton S, Berndt MC, et al. Characterization of a novel membrane glycoprotein involved in platelet activation. J Biol Chem 1989; 264: 13475–13482.

    CAS  PubMed  Google Scholar 

  15. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996; 4: 573–581.

    Article  CAS  Google Scholar 

  16. Sherrington PD, Scott JL, Jin B, Simmons D, Dorahy DJ, Lloyd J, et al. TLiSA1 (PTA1) activation antigen implicated in T cell differentiation and platelet activation is a member of the immunoglobulin superfamily exhibiting distinctive regulation of expression. J Biol Chem 1997; 272: 21735–21744.

    Article  CAS  Google Scholar 

  17. Jin B, Scott JL, Vadas MA, Burns GF . TGF beta down-regulates TLiSA1 expression and inhibits the differentiation of precursor lymphocytes into CTL and LAK cells. Immunology 1989; 66: 570–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jian JL, Zhu CS, Xu ZW, Ouyang WM, Ma DC, Zhang Y, et al. Identification and characterization of the CD226 gene promoter. J Biol Chem 2006; 281: 28731–28736.

    Article  CAS  Google Scholar 

  19. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, et al. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 1999; 11: 615–623.

    Article  CAS  Google Scholar 

  20. Ralston KJ, Hird SL, Zhang X, Scott JL, Jin BQ, Thorne RF, et al. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J Biol Chem 2004; 279: 33816–33828.

    Article  CAS  Google Scholar 

  21. Tian F, Li D, Xia H, Liu X, Jia W, Sun C, et al. Isolation of cDNAs encoding gibbon and monkey platelet and T cell activation antigen 1 (PTA1). DNA Seq 1999; 10: 155–161.

    Article  CAS  Google Scholar 

  22. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003; 198: 557–567.

    Article  CAS  Google Scholar 

  23. Tahara-Hanaoka S, Miyamoto A, Hara A, Honda S, Shibuya K, Shibuya A . Identification and characterization of murine DNAM-1 (CD226) and its poliovirus receptor family ligands. Biochem Biophys Res Commun 2005; 329: 996–1000.

    Article  CAS  Google Scholar 

  24. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M . Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 2004; 172: 3994–3998.

    Article  CAS  Google Scholar 

  25. Wang PL, O’Farrell S, Clayberger C, Krensky AM . Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 1992; 148: 2600–2608.

    CAS  PubMed  Google Scholar 

  26. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 2009; 39: 695–703.

    Article  CAS  Google Scholar 

  27. Dustin ML . The immunological synapse. Arthritis Res 2002; 4(Suppl 3): S119–S125.

    Article  Google Scholar 

  28. Leitinger B, Hogg N . The involvement of lipid rafts in the regulation of integrin function. J Cell Sci 2002; 115: 963–972.

    CAS  PubMed  Google Scholar 

  29. Marwali MR, MacLeod MA, Muzia DN, Takei F . Lipid rafts mediate association of LFA-1 and CD3 and formation of the immunological synapse of CTL. J Immunol 2004; 173: 2960–2967.

    Article  CAS  Google Scholar 

  30. Shibuya A, Lanier LL, Phillips JH . Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J Immunol 1998; 161: 1671–1676.

    CAS  PubMed  Google Scholar 

  31. Shirakawa J, Shibuya K, Shibuya A . Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int Immunol 2005; 17: 217–223.

    Article  CAS  Google Scholar 

  32. Shirakawa J, Wang Y, Tahara-Hanaoka S, Honda S, Shibuya K, Shibuya A . LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int Immunol 2006; 18: 951–957.

    Article  CAS  Google Scholar 

  33. Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, Tachibana K, et al. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell–cell adhesion activities. J Biol Chem 2000; 275: 10291–10299.

    Article  CAS  Google Scholar 

  34. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D . Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275: 27979–27988.

    CAS  PubMed  Google Scholar 

  35. Boles KS, Stepp SE, Bennett M, Kumar V, Mathew PA . 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol Rev 2001; 181: 234–249.

    Article  CAS  Google Scholar 

  36. Mendelsohn CL, Wimmer E, Racaniello VR . Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989; 56: 855–865.

    Article  CAS  Google Scholar 

  37. Krummenacher C, Baribaud F, Ponce de Leon M, Baribaud I, Whitbeck JC, Xu R, et al. Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus. Virology 2004; 322: 286–299.

    Article  CAS  Google Scholar 

  38. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA . A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989; 56: 849–853.

    Article  CAS  Google Scholar 

  39. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, et al. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104: 441–451.

    Article  CAS  Google Scholar 

  40. Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M, Griffin C, et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 2005; 6: 181–188.

    Article  CAS  Google Scholar 

  41. Bottino C, Castriconi R, Moretta L, Moretta A . Cellular ligands of activating NK receptors. Trends Immunol 2005; 26: 221–226.

    Article  CAS  Google Scholar 

  42. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 2005; 42: 463–469.

    Article  CAS  Google Scholar 

  43. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, et al. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 2004; 64: 9180–9184.

    Article  CAS  Google Scholar 

  44. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066–2073.

    Article  CAS  Google Scholar 

  45. Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 2006; 107: 1491–1496.

    Article  CAS  Google Scholar 

  46. Bryceson YT, March ME, Ljunggren HG, Long EO . Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006; 107: 159–166.

    Article  CAS  Google Scholar 

  47. Fuchs A, Colonna M . The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 2006; 16: 359–366.

    Article  CAS  Google Scholar 

  48. Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A, et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 2003; 198: 1829–1839.

    Article  CAS  Google Scholar 

  49. Dardalhon V, Schubart AS, Reddy J, Meyers JH, Monney L, Sabatos CA, et al. CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions. J Immunol 2005; 175: 1558–1565.

    Article  CAS  Google Scholar 

  50. Deng T, Liu SW, Wu Q, Liu Y, Ju W, Liu JY, et al. CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus. J Immunol 2005; 174: 1281–1290.

    Article  Google Scholar 

  51. Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, et al. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 2003; 278: 36748–36753.

    Article  CAS  Google Scholar 

  52. Ma D, Sun Y, Lin D, Wang H, Dai B, Zhang X, et al. CD226 is expressed on the megakaryocytic lineage from hematopoietic stem cells/progenitor cells and involved in its polyploidization. Eur J Haematol 2005; 74: 228–240.

    Article  CAS  Google Scholar 

  53. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 2004; 199: 1331–1341.

    Article  CAS  Google Scholar 

  54. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer–dendritic cell interaction. Blood 2006; 107: 2030–2036.

    Article  CAS  Google Scholar 

  55. Bachelet I, Munitz A, Mankutad D, Levi-Schaffer F . Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem 2006; 281: 27190–27196.

    Article  CAS  Google Scholar 

  56. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L . Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107: 1484–1490.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 30801003, 30972683 and 30901310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boquan Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Jin, B. A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions. Cell Mol Immunol 7, 11–19 (2010). https://doi.org/10.1038/cmi.2009.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2009.108

Keywords

This article is cited by

Search

Quick links