Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypomethylation reduced the aggressive potential of human malignant mesothelioma cells

Abstract

Epigenetic modifications have been implicated in the development of therapeutic resistance responsible for the poor prognosis of human malignant mesothelioma (HMM). To find a potential way to overcome this therapeutic resistance, this study investigated the anticancer effects of a DNA demethylating agent, 5-Aza-2′-Deoxycytidine (5-aza-dC), on HMM cells. The 5-aza-dC exhibited minimal detrimental effects on cell survival. However, treatment with 5-aza-dC significantly altered the biological characteristics associated with malignancy, such as cell migration and cell interaction, colony-forming capacity, and invasiveness. Moreover, it significantly reduced the fraction of side population (SP) cells, which are reportedly enriched for more aggressive cells. Large-scale methylation analysis based on methylated DNA immunoprecipitation revealed a more than two fold increase in the methylation level of major tumor suppressor genes in the SP fraction. The data indicated that SP cells might acquire malignancy by hypermethylation of tumor suppressor genes. Treatment with 5-aza-dC could attack more malignant cells through the modification of their methylation status. The results indicate that the modulation of DNA methylation might be a valuable strategy to overcome the therapeutic resistance of HMM. Moreover, ensuing changes in the biological characteristics provide a basis for further analysis of the role of methylation in HMM carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. McDonald AD, McDonald JC . Malignant mesothelioma in north America. Cancer 1980; 46: 1650–1656.

    Article  CAS  Google Scholar 

  2. Robinson BW, Musk AW, Lake RA . Malignant mesothelioma. Lancet 2005; 366: 397–408.

    Article  CAS  Google Scholar 

  3. Eltabbakh GH, Piver MS, Hempling RE, Recio FO, Intengen ME . Clinical picture, response to therapy, and survival of women with diffuse malignant peritoneal mesothelioma. J Surg Oncol 1999; 70: 6–12.

    Article  CAS  Google Scholar 

  4. Carbone M, Kratzke RA, Testa JR . The pathogenesis of mesothelioma. Semin Oncol 2002; 29: 2–17.

    Article  CAS  Google Scholar 

  5. Tsou JA, Shen LY, Siegmund KD, Long TI, Laird PW, Seneviratne CK et al. Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 2005; 47: 193–204.

    Article  Google Scholar 

  6. Wainfan E, Poirier LA . Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 1992; 52 (7 Supplement): 2071s–2077s.

    CAS  PubMed  Google Scholar 

  7. Costello JF, Plass C . Methylation matters. J Med Genet 2001; 38: 285–303.

    Article  CAS  Google Scholar 

  8. Tsou JA, Galler JS, Wali A, Ye W, Siegmund KD, Groshen S et al. DNA methylation profile of 28 potential marker loci in malignant mesothelioma. Lung cancer 2007; 58: 220–230.

    Article  Google Scholar 

  9. Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Kostrzewa M et al. Promoter methylation of RASSF1A, RARβ and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer 2006; 54: 109–116.

    Article  Google Scholar 

  10. Issa J-PJ, Kantarjian HM, Kirkpatrick P . Azacitidine. Nat Rev Drug Discov 2005; 4: 275–276.

    Article  CAS  Google Scholar 

  11. Kai K, D’Costa S, Yoon B-I, Brody AR, Sills RC, Kim Y . Characterization of side population cells in human malignant mesothelioma cell lines. Lung Cancer 2010; 70: 146–151.

    Article  Google Scholar 

  12. Kim H, Kim M, Kim N, Kim Y . Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines. Cancer Gene Ther 2015; 22: 387–395.

    Article  Google Scholar 

  13. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  14. Su J, Wang Y, Xing X, Liu J, Zhang Y . Genome-wide analysis of DNA methylation in bovine placentas. BMC Genomics 2014; 15: 12.

    Article  Google Scholar 

  15. Mohn F, Weber M, Schübeler D, Roloff T-C . Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 2009; 507: 55–64.

    Article  CAS  Google Scholar 

  16. Kim M-C, Kim N-Y, Seo Y-R, Kim Y . An integrated analysis of the genome-wide profiles of dna methylation and mRNA expression defining the side population of a human malignant mesothelioma cell line. J Cancer 2016; 7: 1668–1679.

    Article  CAS  Google Scholar 

  17. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C . A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immuol Methods 1995; 184: 39–51.

    Article  CAS  Google Scholar 

  18. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 2005; 65: 6207–6219.

    Article  CAS  Google Scholar 

  19. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4827–4833.

    Article  CAS  Google Scholar 

  20. Jacinto FV, Ballestar E, Esteller M . Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 2008; 44: 35.

    Article  CAS  Google Scholar 

  21. Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 2011; 6: 34–44.

    Article  CAS  Google Scholar 

  22. Baylin SB . DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005; 2: S4–S11.

    Article  CAS  Google Scholar 

  23. Momparler RL, Bovenzi V . DNA methylation and cancer. J Cell Physiol 2000; 183: 145–154.

    Article  CAS  Google Scholar 

  24. Licht JD . DNA methylation inhibitors in cancer therapy: the immunity dimension. Cell 2015; 162: 938–939.

    Article  CAS  Google Scholar 

  25. Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R et al. 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45-and p53-dependent mechanisms. J Pharmacol Exp Ther 2005; 312: 525–536.

    Article  CAS  Google Scholar 

  26. Pass HI, Vogelzang N, Carbone M . Malignant Mesothelioma: Pathogenesis, Diagnosis, and Translational Therapies. Springer Science & Business Media: Berlin, 2006.

    Google Scholar 

  27. Lainey E, Wolfromm A, Marie N, Enot D, Scoazec M, Bouteloup C et al. Azacytidine and erlotinib exert synergistic effects against acute myeloid leukemia. Oncogene 2013; 32: 4331–4342.

    Article  CAS  Google Scholar 

  28. Zhou X, Huang S, Zhang D, Zhang S, Li W, Chen Z et al. Effects of 5-aza-2′ deoxycytidine on RECK gene expression and tumor invasion in salivary adenoid cystic carcinoma. Braz J Med Biol Res 2015; 48: 254–260.

    Article  CAS  Google Scholar 

  29. Cho CY, Wang JH, Chang HC, Chang CK, Hung WC . Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. J Cell Physiol 2007; 213: 65–69.

    Article  CAS  Google Scholar 

  30. Burrell RA, Swanton C . Re-evaluating clonal dominance in cancer evolution. Trends Cancer 2016; 2: 263–276.

    Article  Google Scholar 

  31. Pylkkänen L, Wolff H, Stjernvall T, Knuuttila A, Anttila S, Husgafvel-Pursiainen K . Reduced Fhit protein expression in human malignant mesothelioma. Virchows Archiv 2004; 444: 43–48.

    Article  Google Scholar 

  32. Miyanaga A, Masuda M, Tsuta K, Kawasaki K, Nakamura Y, Sakuma T et al. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. J Thorac Oncol 2015; 10: 844–851.

    Article  CAS  Google Scholar 

  33. Poulikakos P, Xiao G, Gallagher R, Jablonski S, Jhanwar S, Testa JR . Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 2006; 25: 5960–5968.

    Article  CAS  Google Scholar 

  34. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 2011; 71: 873–883.

    Article  CAS  Google Scholar 

  35. Pinton G, Brunelli E, Murer B, Puntoni R, Puntoni M, Fennell DA et al. Estrogen receptor-β affects the prognosis of human malignant mesothelioma. Cancer Res 2009; 69: 4598–4604.

    Article  CAS  Google Scholar 

  36. Batra S, Shi Y, Kuchenbecker KM, He B, Reguart N, Mikami I et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun 2006; 342: 1228–1232.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No.: NRF-2013R1A2A2A01068237) and by the BK21 PLUS Program for Creative Veterinary Science Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NY., Kim, MC. & Kim, Y. Hypomethylation reduced the aggressive potential of human malignant mesothelioma cells. Cancer Gene Ther 23, 425–432 (2016). https://doi.org/10.1038/cgt.2016.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.57

This article is cited by

Search

Quick links