Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Glioblastoma: exosome and microRNA as novel diagnosis biomarkers

Abstract

Glioblastoma (GBM) is known as a tumor type, which arises from astrocytes. Several studies indicated that GBM tumor cells are malignant. This is because of the fact that they consist of different cell types, which are reproducing very quickly and are also supported by a large network of blood vessels. The correct identification of various stages of GBM could help to better treat the patients with this disease. Therefore, new biomarkers such as exosomes and microRNAs (miRNAs) may help us to learn more about GBM and they may also lead to a more effective treatment for patients with GBM. Exosomes have emerged as biological vehicles, which can perform various tasks in carcinogenesis pathways such as PI3K/AKT, SOX2, PTEN, ERK, and STAT3. The miRNAs are known as small noncoding RNAs that are involved in several GBM pathogenic events. These molecules have key roles in various biological processes such as angiogenesis, metastasis and tumor growth. In this study, we highlighted various exosomes and miRNAs that could be used for diagnosis and/or prognosis biomarkers in patients with GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Qiu S, Lin S, Hu D, Feng Y, Tan Y, Peng Y . Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med 2013; 11: 1.

    Article  CAS  Google Scholar 

  2. la Iglesia Nd, Puram SV, Bonni A . STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med 2009; 9: 580–590.

    Article  Google Scholar 

  3. Cloughesy TF, Cavenee WK, Mischel PS . Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol 2014; 9: 1–25.

    Article  CAS  Google Scholar 

  4. Caspani EM, Crossley PH, Redondo-Garcia C, Martinez S . Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PloS One 2014; 9: e101402.

    Article  Google Scholar 

  5. Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M . A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 2013; 47: 131–144.

    Article  Google Scholar 

  6. Ciafre S, Galardi S, Mangiola A, Ferracin M, Liu C-G, Sabatino G et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophy Res Commun 2005; 334: 1351–1358.

    Article  CAS  Google Scholar 

  7. Novakova J, Slaby O, Vyzula R, Michalek J . MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 2009; 386: 1–5.

    Article  CAS  Google Scholar 

  8. Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, Lzicarova E et al. MiR‐195, miR‐196b, miR‐181c, miR‐21 expression levels and O‐6‐methylguanine‐DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 2011; 102: 2186–2190.

    Article  CAS  Google Scholar 

  9. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    Article  CAS  Google Scholar 

  10. Houseley J, LaCava J, Tollervey D . RNA-quality control by the exosome. Nat Rev Mol Cell Biol 2006; 7: 529–539.

    Article  CAS  Google Scholar 

  11. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527: 329–335.

    Article  CAS  Google Scholar 

  12. Thoms M, Thomson E, Baßler J, Gnädig M, Griesel S, Hurt E . the exosome is recruited to RNA substrates through specific adaptor proteins. Cell 2015; 162: 1029–1038.

    Article  CAS  Google Scholar 

  13. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield X et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 2009; 100: 1603–1607.

    Article  CAS  Google Scholar 

  14. Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010; 78: 191–199.

    Article  Google Scholar 

  15. Alvarez ML, Khosroheidari M, Ravi RK, DiStefano JK . Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 2012; 82: 1024–1032.

    Article  CAS  Google Scholar 

  16. Seow Y, Wood MJ . Biological gene delivery vehicles: beyond viral vectors. Mol Ther 2009; 17: 767–777.

    Article  CAS  Google Scholar 

  17. Bellingham SA, Guo B, Coleman B, Hill AF . Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 2012; 3: 124.

    Article  CAS  Google Scholar 

  18. Tan A, Rajadas J, Seifalian AM . Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 2013; 65: 357–367.

    Article  CAS  Google Scholar 

  19. Guescini M, Genedani S, Stocchi V, Agnati LF . Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010; 117: 1–4.

    Article  CAS  Google Scholar 

  20. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P . Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2013; 2: e126.

    Article  Google Scholar 

  21. Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 2015; 6: 6999.

    Article  CAS  Google Scholar 

  22. Keller S, Ridinger J, Rupp A-K, Janssen JW, Altevogt P . Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 2011; 9: 1.

    Article  Google Scholar 

  23. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD et al. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 2013; 6: 638–IN6.

    Article  Google Scholar 

  24. Cheshmi H . Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. New Cell Mol Biotechnol J 2011; 1: 75–88.

    Google Scholar 

  25. Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PloS One 2013; 8: e78115.

    Article  CAS  Google Scholar 

  26. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 2012; 18: 1835–1840.

    Article  CAS  Google Scholar 

  27. Gholamin S, Pasdar A, Sadegh Khorrami M, Mirzaei H, Reza Mirzaei H, Salehi R et al. The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment. Curr Pharm Des 2016; 22: 397–403.

    Article  CAS  Google Scholar 

  28. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Reza Mirzaei H et al. Curcumin: a new candidate for melanoma therapy? Int J Cancer 2016; 139: 1683–1695.

    Article  CAS  Google Scholar 

  29. Mirzaei H, Sahebkar A, Yazdi F, Salehi H, Jafari M, Namdar A et al. Circulating microRNAs in hepatocellular carcinoma: potential diagnostic and prognostic biomarkers. Curr Pharm Des 2016 (e-pub ahead of print: 2 March 2016).

  30. Mirzaei H, Gholamin S, Shahidsales S, Sahebkar A, Jafaari MR, Mirzaei HR et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016; 53: 25–32.

    Article  CAS  Google Scholar 

  31. Simonian M, Mosallayi M, Mirzaei H . Circulating miR-21 as novel biomarker in gastric cancer: diagnostic and prognostic biomarker. J Cancer Res Ther 2016 (e-pub ahead of print).

  32. Salarini R, Sahebkar A, Mirzaei H, Jaafari M, Riahi M, Hadjati J et al. Epi-drugs and epi-miRs: moving beyond current cancer therapies. Curr Cancer Drug Targets 2015 (e-pub ahead of print 6 December 2015).

  33. Wu Z, Sun L, Wang H, Yao J, Jiang C, Xu W et al. MiR-328 expression is decreased in high-grade gliomas and is associated with worse survival in primary glioblastoma. PloS One 2012; 7: e47270.

    Article  CAS  Google Scholar 

  34. Wang Q, Li P, Li A, Jiang W, Wang H, Wang J et al. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. Journal of Experimental &. Clin Cancer Res 2012; 31: 1.

    Article  Google Scholar 

  35. Chen L, Zhang A, Li Y, Zhang K, Han L, Du W et al. MiR-24 regulates the proliferation and invasion of glioma by ST7L via β-catenin/Tcf-4 signaling. Cancer Lett 2013; 329: 174–180.

    Article  CAS  Google Scholar 

  36. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 1.

    Article  Google Scholar 

  37. Tan X, Wang S, Yang B, Zhu L, Yin B, Chao T et al. The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. PloS One 2012; 7: e49570.

    Article  CAS  Google Scholar 

  38. Tang H, Liu X, Wang Z, She X, Zeng X, Deng M et al. Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res 2011; 1390: 21–32.

    Article  CAS  Google Scholar 

  39. Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S et al. Oncogenic effects of miR-10b in glioblastoma stem cells. J Neuro Oncol 2013; 112: 153–163.

    Article  CAS  Google Scholar 

  40. Chaudhry MA, Sachdeva H, Omaruddin RA . Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol 2010; 29: 553–561.

    Article  CAS  Google Scholar 

  41. Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J et al. cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci 2012; 109: 15805–15810.

    Article  CAS  Google Scholar 

  42. Chen L, Han L, Zhang K, Shi Z, Zhang J, Zhang A et al. VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. Neuro Oncol 2012; 14: 1026–1036.

    Article  CAS  Google Scholar 

  43. Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H et al. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res 2013; 73: 990–999.

    Article  CAS  Google Scholar 

  44. Zhang C-Z, Zhang J-X, Zhang A-L, Shi Z-D, Han L, Jia Z-F et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 2010; 9: 1.

    Google Scholar 

  45. Wu N, Xiao L, Zhao X, Zhao J, Wang J, Wang F et al. miR‐125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett. 2012; 586: 3831–3839.

    Article  CAS  Google Scholar 

  46. Wang K, Wang X, Zou J, Zhang A, Wan Y, Pu P et al. miR-92b controls glioma proliferation and invasion through regulating Wnt/beta-catenin signaling via Nemo-like kinase. Neuro Oncol 2013; 15: 578–588.

    Article  Google Scholar 

  47. Sana J, Hajduch M, Michalek J, Vyzula R, Slaby O . MicroRNAs and glioblastoma: roles in core signalling pathways and potential clinical implications. J Cell Mol Med 2011; 15: 1636–1644.

    Article  CAS  Google Scholar 

  48. Delic S, Lottmann N, Stelzl A, Liesenberg F, Wolter M, Götze S et al. MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation. Neuro Oncology 2013; 16: 179–190.

    Article  Google Scholar 

  49. Xu X, Xu Q, Tong J, Zhu M, Nie F, Chen X et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer 2012; 106: 1320–1330.

    Article  CAS  Google Scholar 

  50. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23: 1327–1337.

    Article  CAS  Google Scholar 

  51. Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N et al. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun 2008; 376: 86–90.

    Article  CAS  Google Scholar 

  52. Koo S, Martin GS, Schulz KJ, Ronck M, Toussaint LG . Serial selection for invasiveness increases expression of miR-143/miR-145 in glioblastoma cell lines. BMC Cancer 2012; 12: 1.

    Article  Google Scholar 

  53. Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C et al. MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med 2011; 89: 1037–1050.

    Article  CAS  Google Scholar 

  54. Chen L, Zhang J, Feng Y, Li R, Sun X, Du W et al. MiR-410 regulates MET to influence the proliferation and invasion of glioma. Int J Biochem Cell Biol 2012; 44: 1711–1717.

    Article  CAS  Google Scholar 

  55. Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 2009; 380: 205–210.

    Article  CAS  Google Scholar 

  56. Zheng X, Chopp M, Lu Y, Buller B, Jiang F . MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett 2013; 329: 146–154.

    Article  CAS  Google Scholar 

  57. Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K et al. MiR-195, miR-455-3p and miR-10a are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 2010; 296: 241–248.

    Article  CAS  Google Scholar 

  58. Haghikia A, Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Décard BF et al. Regulated microRNAs in the CSF of patients with multiple sclerosis a case-control study. Neurology 2012; 79: 2166–2170.

    Article  CAS  Google Scholar 

  59. Yang Y, Wu J, Guan H, Cai J, Fang L, Li J et al. MiR‐136 promotes apoptosis of glioma cells by targeting AEG‐1 and Bcl‐2. FEBS Lett 2012; 586: 3608–3612.

    Article  CAS  Google Scholar 

  60. Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 2014; 74: 1541–1553.

    Article  CAS  Google Scholar 

  61. Jeansonne D, Pacifici M, Lassak A, Reiss K, Russo G, Zabaleta J et al. Differential effects of microRNAs on glioblastoma growth and migration. Genes 2013; 4: 46–64.

    Article  Google Scholar 

  62. Li X, Liu Y, Granberg KJ, Wang Q, Moore LM, Ji P et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene 2015; 34: 1619–1628.

    Article  CAS  Google Scholar 

  63. Yan W, Zhang W, Sun L, Liu Y, You G, Wang Y et al. Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Res 2011; 1411: 108–115.

    Article  CAS  Google Scholar 

  64. Wang L, Shi M, Hou S, Ding B, Liu L, Ji X et al. MiR‐483–5p suppresses the proliferation of glioma cells via directly targeting ERK1. FEBS Lett 2012; 586: 1312–1317.

    Article  CAS  Google Scholar 

  65. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572.

    Article  CAS  Google Scholar 

  66. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2008; 72: 397–402.

    Article  Google Scholar 

  67. Suh S-S, Yoo JY, Nuovo GJ, Jeon Y-J, Kim S, Lee TJ et al. MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci 2012; 109: 5316–5321.

    Article  CAS  Google Scholar 

  68. Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM et al. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 2011; 1: 710–720.

    PubMed Central  Google Scholar 

  69. Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 2010; 9: 1031–1036.

    Article  CAS  Google Scholar 

  70. Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas J, Gill R, Huillard E et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 2012; 31: 1884–1895.

    Article  CAS  Google Scholar 

  71. Wei J, Wang F, Kong L-Y, Xu S, Doucette T, Ferguson SD et al. MiR-124 inhibits STAT3 signaling to enhance T cell–mediated immune clearance of glioma. Cancer Res 2013; 73: 3913–3926.

    Article  CAS  Google Scholar 

  72. Yao Y, Xue Y, Ma J, Shang C, Wang P, Liu L et al. MiR-330-mediated regulation of SH3GL2 expression enhances malignant behaviors of glioblastoma stem cells by activating ERK and PI3K/AKT signaling pathways. PloS One 2014; 9: e95060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Mirzaei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatpour, L., Fadaee, E., Fadaei, S. et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 23, 415–418 (2016). https://doi.org/10.1038/cgt.2016.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.48

This article is cited by

Search

Quick links