Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them

Abstract

Glioblastoma (GBM) is by far the most common and the most aggressive of all the primary brain malignancies. No curative therapy exists, and median life expectancy hovers at around 1 year after diagnosis, with a minute fraction surviving beyond 5 years. The difficulty in treating GBM lies in the cancer’s protected niche within the blood–brain barrier and the heterogeneity of the cancer cells, which possess varying degrees of susceptibility to various common modalities of treatment. Over time, it is the tumor heterogeneity of GBM and the ability of the cancer stem cells to evolve in response treatment that renders the cancer refractory to conventional treatment. Therefore, research has increasingly focused on treatment that incorporates knowledge of GBM molecular biology to therapeutic strategies. One type of therapy that shows great promise is the area of T-cell immunotherapy to target GBM-specific tumor antigens. One attractive strategy is to use T cells that have undergone genetic modification to express a chimeric antigen receptor capable of interacting with tumor antigens. In this article, we will review chimeric antigen receptor T-cell therapy, their advantages, drawbacks, challenges facing their use and how those challenges may be overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  2. Lawson HC, Sampath P, Bohan E, Park MC, Hussain N, Olivi A et al. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neuro-Oncol 2006; 83: 61–70.

    Google Scholar 

  3. Wen PY, Kesari S . Malignant gliomas in adults. N Engl J Med 2008; 359: 492–507.

    Article  CAS  PubMed  Google Scholar 

  4. Altenschmidt U, Klundt E, Groner B . Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J Immunol 1997; 159: 5509–5515.

    CAS  PubMed  Google Scholar 

  5. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36: 133–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122: 863–871.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kershaw MH, Westwood JA, Slaney CY, Darcy PK . Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunol 2014; 3: e16.

    Google Scholar 

  8. Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 2005; 85: 328–341.

    CAS  PubMed  Google Scholar 

  9. Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S, Li G . Immune evasion strategies of glioblastoma. Front Surg 2016; 3: 11.

    PubMed  PubMed Central  Google Scholar 

  10. Chmielewski M, Hombach AA, Abken H . Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol 2013; 4: 371.

    PubMed  PubMed Central  Google Scholar 

  11. Sadelain M, Brentjens R, Riviere I . The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dotti G, Gottschalk S, Savoldo B, Brenner MK . Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257: 107–126.

    CAS  PubMed  Google Scholar 

  13. Lloyd A, Vickery ON, Laugel B . Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies. Front Immunol 2013; 4: 221.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen YY . Efficient gene editing in primary human T cells. Trends Immunol 2015; 36: 667–669.

    CAS  PubMed  Google Scholar 

  15. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 2006; 13: 151–159.

    CAS  PubMed  Google Scholar 

  16. Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kampgen E et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Therapy 2009; 16: 596–604.

    CAS  PubMed  Google Scholar 

  17. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.

    PubMed  PubMed Central  Google Scholar 

  19. Jackson HJ, Rafiq S, Brentjens RJ . Driving CAR T-cells forward. Nat Rev Clin Oncol 2016; 13: 370–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Padfield E, Ellis HP, Kurian KM . Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol 2015; 5: 5.

    PubMed  PubMed Central  Google Scholar 

  21. Gan HK, Kaye AH, Luwor RB . The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 2009; 16: 748–754.

    CAS  PubMed  Google Scholar 

  22. Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015; 7: 275ra22.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Debinski W, Gibo DM . Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol Med 2000; 6: 440–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsi LC, Kundu S, Palomo J, Xu B, Ficco R, Vogelbaum MA et al. Silencing IL-13Ralpha2 promotes glioblastoma cell death via endogenous signaling. Mol Cancer Ther 2011; 10: 1149–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S . Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro-Oncology 2014; 16: 1304–1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q, Doucette S et al. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res 2012; 18: 5949–5960.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krebs S, Chow KK, Yi Z, Rodriguez-Cruz T, Hegde M, Gerken C et al. T cells redirected to interleukin-13Ralpha2 with interleukin-13 mutein—chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Ralpha1. Cytotherapy 2014; 16: 1121–1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC . Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004; 64: 9160–9166.

    CAS  PubMed  Google Scholar 

  29. Sengupta S, Thaci B, Crawford AC, Sampath P . Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. Biomed Res Int 2014; 2014: 952128.

    PubMed  PubMed Central  Google Scholar 

  30. Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 2013; 21: 2087–2101.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 2010; 16: 474–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS . HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004; 64: 4980–4986.

    CAS  PubMed  Google Scholar 

  33. Hervent AS, De Keulenaer GW . Molecular mechanisms of cardiotoxicity induced by ErbB receptor inhibitor cancer therapeutics. Int J Mol Sci 2012; 13: 12268–12286.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Wakefield A, Ghazi A et al. Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a phase I trial. J Immunother Cancer 2015; 3 (Suppl 2): O11.

    PubMed Central  Google Scholar 

  35. Liu F, Park PJ, Lai W, Maher E, Chakravarti A, Durso L et al. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 2006; 66: 10815–10823.

    CAS  PubMed  Google Scholar 

  36. Wu N, Zhao X, Liu M, Liu H, Yao W, Zhang Y et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PLoS One 2011; 6: e16264.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Wang Y, Wang Y, Zhen H, Yang H, Fei Z et al. Expression of EphA2 in human astrocytic tumors: correlation with pathologic grade, proliferation and apoptosis. Tumour Biol 2007; 28: 165–172.

    PubMed  Google Scholar 

  38. Wang J, Svendsen A, Kmiecik J, Immervoll H, Skaftnesmo KO, Planaguma J et al. Targeting the NG2/CSPG4 proteoglycan retards tumour growth and angiogenesis in preclinical models of GBM and melanoma. PLoS One 2011; 6: e23062.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Al-Mayhani MT, Grenfell R, Narita M, Piccirillo S, Kenney-Herbert E, Fawcett JW et al. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature. Neuro-Oncology 2011; 13: 830–845.

    PubMed  PubMed Central  Google Scholar 

  40. Shiina S, Ohno M, Ohka F, Kuramitsu S, Yamamichi A, Kato A et al. CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res 2016; 4: 259–268.

    CAS  PubMed  Google Scholar 

  41. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 2002; 62: 3347–3350.

    CAS  PubMed  Google Scholar 

  42. Landi D, Hegde M, Ahmed N . Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy. Front Oncol 2014; 4: 338.

    PubMed  PubMed Central  Google Scholar 

  43. Ghazi A, Ashoori A, Hanley PJ, Brawley VS, Shaffer DR, Kew Y et al. Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma. J Immunother 2012; 35: 159–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362: 1375–1377.

    PubMed  Google Scholar 

  45. Gough M, Crittenden M, Thanarajasingam U, Sanchez-Perez L, Thompson J, Jevremovic D et al. Gene therapy to manipulate effector T cell trafficking to tumors for immunotherapy. J Immunol 2005; 174: 5766–5773.

    CAS  PubMed  Google Scholar 

  46. Rabinovich GA, Gabrilovich D, Sotomayor EM . Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 2010; 9: 67–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2013; 2: e105.

    PubMed  PubMed Central  Google Scholar 

  49. Chen YS, Chen ZP . Vasculogenic mimicry: a novel target for glioma therapy. Chin J Cancer 2014; 33: 74–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA . Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010; 70: 6171–6180.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Niederman TM, Ghogawala Z, Carter BS, Tompkins HS, Russell MM, Mulligan RC . Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci USA 2002; 99: 7009–7014.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y et al. IL-10 and TGF-beta2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep 2011; 38: 3585–3591.

    CAS  PubMed  Google Scholar 

  53. Wilkie S, Burbridge SE, Chiapero-Stanke L, Pereira AC, Cleary S, van der Stegen SJ et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem 2010; 285: 25538–25544.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Paladugu M, Thakur A, Lum LG, Mittal S, Parajuli P . Generation and immunologic functions of Th17 cells in malignant gliomas. Cancer Immunol Immunother 2013; 62: 75–86.

    CAS  PubMed  Google Scholar 

  55. Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology 2009; 11: 394–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chahlavi A, Rayman P, Richmond AL, Biswas K, Zhang R, Vogelbaum M et al. Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer Res 2005; 65: 5428–5438.

    CAS  PubMed  Google Scholar 

  57. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22: 633–642.

    CAS  PubMed  Google Scholar 

  58. Calinescu AA, Kamran N, Baker G, Mineharu Y, Lowenstein PR, Castro MG . Overview of current immunotherapeutic strategies for glioma. Immunotherapy 2015; 7: 1073–1104.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chambers CA, Kuhns MS, Egen JG, Allison JP . CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–594.

    CAS  PubMed  Google Scholar 

  60. Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 2003; 63: 7462–7467.

    CAS  PubMed  Google Scholar 

  61. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20: 5290–5301.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dotti G, Savoldo B, Pule M, Straathof KC, Biagi E, Yvon E et al. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 2005; 105: 4677–4684.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Foster AE, Dotti G, Lu A, Khalil M, Brenner MK, Heslop HE et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 2008; 31: 500–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Watanabe N, Anurathapan U, Brenner MK, Heslop HE, Leen AM, Rooney CM et al. Transgenic expression of a novel immunosuppressive signal converter on T cells. Mol Ther 2013; 21 (Suppl 1): S153.

    Google Scholar 

  68. Leen AM, Katari U, Keirnan J, Rooney CM, Brenner MK, Vera JF . Improved expansion and anti-tumor activity of tumor-specific CTLs using a transgenic chimeric cytokine receptor. Mol Ther 2011; 19 (Suppl 1): S194.

    Google Scholar 

  69. Sun J, Dotti G, Huye LE, Foster AE, Savoldo B, Gramatges MM et al. T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol Ther 2010; 18: 2006–2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3: e957994.

    PubMed  PubMed Central  Google Scholar 

  71. Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther 2013; 21: 629–637.

    CAS  PubMed  Google Scholar 

  72. Riccione K, Suryadevara CM, Snyder D, Cui X, Sampson JH, Sanchez-Perez L . Generation of CAR T cells for adoptive therapy in the context of glioblastoma standard of care. J Vis Exp 2015 (e-pub ahead of print 16 Feb 2016; doi:10.3791/52397).

  73. Finney HM, Akbar AN, Lawson AD . Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 2004; 172: 104–113.

    CAS  PubMed  Google Scholar 

  74. Song DG, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ Jr . CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 2012; 119: 696–706.

    CAS  PubMed  Google Scholar 

  75. Krenciute G, Krebs S, Torres D, Wu MF, Liu H, Dotti G et al. Characterization and functional analysis of scFv-based chimeric antigen receptors to redirect T cells to IL13Ralpha2-positive glioma. Mol Ther 2016; 24: 354–363.

    CAS  PubMed  Google Scholar 

  76. Prapa M, Caldrer S, Spano C, Bestagno M, Golinelli G, Grisendi G et al. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget 2015; 6: 24884–24894.

    PubMed  PubMed Central  Google Scholar 

  77. Maude SL, Teachey DT, Porter DL, Grupp SA . CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015; 125: 4017–4023.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR . Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 2012; 119: 72–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC . Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011; 117: 1888–1898.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang X, Wong CW, Urak R, Taus E, Aguilar B, Chang WC et al. Comparison of naive and central memory derived CD8 effector cell engraftment fitness and function following adoptive transfer. Oncoimmunology 2016; 5: e1072671.

    PubMed  Google Scholar 

  81. Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 2013; 31: 928–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cooper LJ, Al-Kadhimi Z, Serrano LM, Pfeiffer T, Olivares S, Castro A et al. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 2005; 105: 1622–1631.

    CAS  PubMed  Google Scholar 

  83. Pegram HJ, Park JH, Brentjens RJ . CD28z CARs and armored CARs. Cancer J 2014; 20: 127–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu K, Rosenberg SA . Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 2001; 167: 6356–6365.

    CAS  PubMed  Google Scholar 

  85. Liu K, Rosenberg SA . Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J Immunother 2003; 26: 190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther 2008; 19: 496–510.

    CAS  PubMed  Google Scholar 

  87. Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 2010; 70: 6725–6734.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA . Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175: 7226–7234.

    CAS  PubMed  Google Scholar 

  89. Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 2007; 109: 5168–5177.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wurth R, Bajetto A, Harrison JK, Barbieri F, Florio T . CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front Cell Neurosci 2014; 8: 144.

    PubMed  PubMed Central  Google Scholar 

  91. Zhang J, Basher F, Wu JD . NKG2D ligands in tumor immunity: two sides of a coin. Front Immunol 2015; 6: 97.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lanier LL . NK cell recognition. Annu Rev Immunol 2005; 23: 225–274.

    CAS  PubMed  Google Scholar 

  93. Spear P, Wu MR, Sentman ML, Sentman CL . NKG2D ligands as therapeutic targets. Cancer Immun 2013; 13: 8.

    PubMed  PubMed Central  Google Scholar 

  94. Zhang T, Sentman CL . Mouse tumor vasculature expresses NKG2D ligands and can be targeted by chimeric NKG2D-modified T cells. J Immunol 2013; 190: 2455–2463.

    CAS  PubMed  Google Scholar 

  95. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D . A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 2013; 73: 1777–1786.

    CAS  PubMed  Google Scholar 

  96. Barber A, Meehan KR, Sentman CL . Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Therapy 2011; 18: 509–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Barber A, Zhang T, Sentman CL . Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. J Immunol 2008; 180: 72–78.

    CAS  PubMed  Google Scholar 

  98. Lehner M, Gotz G, Proff J, Schaft N, Dorrie J, Full F et al. Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One 2012; 7: e31210.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18: 843–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu XJ, Tang YM . Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett 2014; 343: 172–178.

    CAS  PubMed  Google Scholar 

  101. Krebs S, Rodriguez-Cruz TG, Derenzo C, Gottschalk S . Genetically modified T cells to target glioblastoma. Front Oncol 2013; 3: 322.

    PubMed  PubMed Central  Google Scholar 

  102. Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 2015; 75: 3596–3607.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 2012; 32: 1059–1070.

    CAS  PubMed  Google Scholar 

  104. Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH et al. Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 2013; 1: 43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124: 188–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study. Lancet Oncol 2009; 10: 489–500.

    PubMed  Google Scholar 

  107. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gargett T, Brown MP . The inducible caspase-9 suicide gene system as a 'safety switch' to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 2014; 5: 235.

    PubMed  PubMed Central  Google Scholar 

  109. Francescone R, Scully S, Bentley B, Yan W, Taylor SL, Oh D et al. Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation. J Biol Chem 2012; 287: 24821–24831.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu KV, Bergers G . Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2013; 2: 49–65.

    CAS  PubMed  Google Scholar 

  111. Lamb LS Jr, Bowersock J, Dasgupta A, Gillespie GY, Su Y, Johnson A et al. Engineered drug resistant gammadelta T cells kill glioblastoma cell lines during a chemotherapy challenge: a strategy for combining chemo- and immunotherapy. PLoS One 2013; 8: e51805.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Reik A, Zhou Y, Hamlett A, Wagner J, Mendel MC, Flinders CW et al. Zinc finger nucleases targeting the glucocorticoid receptor allow IL-13 zetakine transgenic CTLs to kill glioblastoma cells in vivo in the presence of immunosuppressing glucocorticoids. Mol Ther 2008; 16 (Suppl): S13–S14.

    Google Scholar 

  113. Gupta P, Han SY, Holgado-Madruga M, Mitra SS, Li G, Nitta RT et al. Development of an EGFRvIII specific recombinant antibody. BMC Biotechnol 2010; 10: 72.

    PubMed  PubMed Central  Google Scholar 

  114. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 2014; 20: 972–984.

    CAS  PubMed  Google Scholar 

  115. Ohno M, Ohkuri T, Kosaka A, Tanahashi K, June CH, Natsume A et al. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J Immunother Cancer 2013; 1: 21.

    PubMed  PubMed Central  Google Scholar 

  116. Bullain SS, Sahin A, Szentirmai O, Sanchez C, Lin N, Baratta E et al. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J Neurooncol 2009; 94: 373–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S, De Leon G et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014; 9: e94281.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Sampath.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, S., Mao, G., Gokaslan, Z. et al. Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Ther 24, 121–129 (2017). https://doi.org/10.1038/cgt.2016.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.46

This article is cited by

Search

Quick links