Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer

Subjects

Abstract

MicroRNAs (miRNAs) represent a group of novel therapeutic small molecules involved in the management of lung cancer treatment. Our study aims to investigate the potential role of miRNAs in the treatment of non-small cell lung cancer (NSCLC). Human miRNA microarray was performed in 60 recurrent NSCLC patient tissue samples following radiotherapy and their adjacent normal tissues. miRNA profiling results were validated using quantitative real-time PCR. Inner cell radiosensitivity and endogenous miRNA expression was determined by colony-formation assay and RT-PCR. We determined the effect of miRNA on cell proliferation, survival and metastasis; tumor xenografts were taken to identify the presence of miRNA in vivo. miRNA panel results indicated that a total of 14 miRNAs were differentially expressed in the recurrent NSCLC samples. In our study, miRNA-95 was highly overexpressed in recurrent NSCLC cells. Knockdown of miRNA-95 expression increased the radiosensitivity of NSCLC, promoted tumor cell apoptosis and decreased cellular proliferation. In vivo assays demonstrated reduced tumor growth and resistance to radiation in tumor xenografts by downregulating miRNA-95. Our study demonstrated a potential therapeutic measure of miRNA-95 as a radiosensitive marker for the treatment of non-small lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  PubMed  Google Scholar 

  3. Fidias P, Novello S . Strategies for prolonged therapy in patients with advanced non-small-cell lung cancer. J Clin Oncol 2010; 28: 5116–5123.

    Article  PubMed  Google Scholar 

  4. Fuld AD, Dragnev KH, Rigas JR . Pemetrexed in advanced non-small-cell lung cancer. Expert Opin Pharmacother 2010; 11: 1387–1402.

    Article  CAS  PubMed  Google Scholar 

  5. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M et al. Sythetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 2007; 446: 815–819.

    Article  CAS  PubMed  Google Scholar 

  6. le Péchoux C . Role of postoperative radiotherapy in resected non-small cell lung cancer: a reassessment based on new data. Oncologist 2011; 16: 672–681.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Danesi R, Pasqualetti G, Giovannetti E, Crea F, Altavilla G, Del Tacca M et al. Pharmacogenomics in non-small-cell lung cancer chemotherapy. Adv Drug Deliv Rev 2009; 61: 408–417.

    Article  CAS  PubMed  Google Scholar 

  8. Rödel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T et al. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 2005; 65: 4881–4887.

    Article  PubMed  Google Scholar 

  9. Lee S, Lim MJ, Kim MH, Yu CH, Yun YS, Ahn J et al. An effective strategy for increasing the radiosensitivity of Human lung Cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radic Biol Med 2012; 53: 807–816.

    Article  PubMed  Google Scholar 

  10. Provencio M, Sánchez A, Garrido P, Valcárce F . New molecular targeted therapies integrated with radiation therapy in lung cancer. Clin Lung Cancer 2010; 11: 91–97.

    Article  CAS  PubMed  Google Scholar 

  11. Del Vescovo V, Grasso M, Barbareschi M, Denti MA . MicroRNAs as lung cancer biomarkers. World J Clin Oncol 2014; 5: 604–620.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Yang Q, Wang S . MicroRNAs: a new key in lung cancer. Cancer Chemother Pharmacol 2014; 74: 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  13. Xu YM, Liao XY, Chen XW, Li DZ, Sun JG, Liao RX . Regulation of miRNAs affects radiobiological response of lung cancer stem cells. Biomed Res Int 2015; 2015: 851–841.

    Google Scholar 

  14. Cortez MA, Valdecanas D, Zhang X, Zhan Y, Bhardwaj V, Calin GA et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther 2014; 22: 1494–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korpela E, Vesprini D, Liu SK . MicroRNA in radiotherapy: miRage or miRador? Br J Cancer 2015; 112: 777–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh J-S, Kim J-J, Byun J-Y, Kim I-A . Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-ras. Int J Radiat Oncol Biol Phys 2010; 76: 5–8.

    Article  CAS  PubMed  Google Scholar 

  17. Salim H, Akbar NS, Zong D, Vaculova AH, Lewensohn R, Moshfegh A et al. miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br J Cancer 2012; 107: 1361–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao Z, Zhang L, Yao Q, Tao Z . miR-15b regulates cisplatin resistance and metastasis by targeting PEBP4 in human lung adenocarcinoma cells. Cancer Gene Ther 2015; 22: 108–114.

    Article  CAS  PubMed  Google Scholar 

  19. Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J et al. miRNA-95 mediates radioresistance in tumours by targeting the sphingolipid phosphatase SGPP1. Cancer Res 2013; 73: 6972–6986.

    Article  CAS  PubMed  Google Scholar 

  20. Shen Z, Wu X, Wang Z, Li B, Zhu X . Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. Int J Clin Exp Pathol 2015; 8: 643–648.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM, Slack FJ . Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther 2011; 12: 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma Y, Xia H, Liu Y, Li M . Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. Biomed Res Int 2014; 2014: 617868.

    PubMed  PubMed Central  Google Scholar 

  23. Shin S, Cha HJ, Lee EM, Lee SJ, Seo SK, Jin HO et al. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol 2009; 35: 81–86.

    CAS  PubMed  Google Scholar 

  24. Liu YJ, Lin YF, Chen YF, Luo EC, Sher YP, Tsai MH et al. MicroRNA-449a enhances radiosensitivity in CL1–0 lung adenocarcinoma cells. PLoS One 2013; 8: e62383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Francesco A, de Pitta C, Moret F, Barbieri V, Celotti L, Mognato M . The DNA-damage response to gamma-radiation is affected by miR-27a in A549 cells. Int J Mol Sci 2013; 14: 17881–17896.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007; 67: 11111–11116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arora H, Qureshi R, Jin S, Park AK, Park WY . miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mol Med 2011; 43: 298–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang XC, Du LQ, Tian LL, Wu HL, Jiang XY, Zhang H et al. Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer 2011; 72: 92–99.

    Article  PubMed  Google Scholar 

  29. Ranade AR, Weiss GJ . Methods for microRNA microarray profiling. Methods Mol Biol 2011; 700: 145–152.

    Article  CAS  PubMed  Google Scholar 

  30. Schulze-Bergkamen H, Krammer PH . Apoptosis in cancer—implications for therapy. Semin Oncol 2004; 31: 90–119.

    Article  CAS  PubMed  Google Scholar 

  31. Mirkovic N, Voehringer DW, Story MD, McConkey DJ, McDonnell TJ, Meyn RE . Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene 1997; 15: 1461–1470.

    Article  CAS  PubMed  Google Scholar 

  32. Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG . Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 2006; 6: 107.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen S, Wang H, Ng WL, Curran WJ, Wang Y . Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int J Radiat Oncol Biol Phys 2011; 81: 1524–1529.

    Article  CAS  PubMed  Google Scholar 

  34. Wu Y, Liu GL, Liu SH, Wang CX, Xu YL, Ying Y et al. MicroRNA-148b enhances the radiosensitivity of non-Hodgkin’s Lymphoma cells by promoting radiation-induced apoptosis. J Radiat Res 2012; 53: 516–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, He J, Su F, Ding N, Hu W, Yao B et al. Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis 2013; 4: e699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang XC, Wang W, Zhang ZB, Zhao J, Tan XG, Luo JC . Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer. Radiat Oncol 2013; 8: 146.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Chen S, Hang W, Huang H, Ma H . MiR-95 induces proliferation and chemo- or radioresistance through directly targeting sorting nexin1 (SNX1) in non-small cell lung cancer. Biomed Pharmacother 2014; 68: 589–595.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Zhang C, Hu L, He Y, Shi Z, Tang S et al. Abnormal expression of miR-21 and miR-95 in cancer stem-like cells is associated with radioresistance of lung cancer. Cancer Invest 2015; 33: 165–171.

    Article  CAS  PubMed  Google Scholar 

  39. Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L et al. MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res 2011; 71: 2582–2589.

    Article  CAS  PubMed  Google Scholar 

  40. Hwang SJ, Lee HW, Kim HR, Song HJ, Lee DH, Lee H et al. Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget 2015; 6: 20434–20448.

    PubMed  PubMed Central  Google Scholar 

  41. Fan B, Jiao BH, Fan FS, Lu SK, Song J, Guo CY et al. Downregulation of miR-95-3p inhibits proliferation, and invasion promoting apoptosis of glioma cells by targeting CELF2. Int J Oncol 2015; 47: 1025–1033.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the evaluators, research assistants and particularly the adolescents and families who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-j Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Ma, Cn., Li, Xd. et al. Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther 23, 66–71 (2016). https://doi.org/10.1038/cgt.2016.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.2

This article is cited by

Search

Quick links