Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synergistic tumor suppression by adenovirus-mediated ING4/PTEN double gene therapy for gastric cancer

Abstract

Both inhibitor of growth 4 (ING4) and phosphatase and tensin homolog (PTEN) have been shown to be strong candidate tumor suppressors. However, the combined efficacy of ING4 and PTEN for human gastric cancer remains to be determined. In this report, we constructed a multiple promoter expression cassette-based recombinant adenovirus coexpressing ING4 and PTEN (AdVING4/PTEN), assessed the combined effects of AdVING4/PTEN on gastric cancer using wild-type p53 AGS and SNU-1 human gastric cancer cell lines, and elucidated its underlying mechanisms. We found that AdVING4/PTEN-induced synergistic growth inhibition and apoptosis in vitro AGS or SNU-1 tumor cells and in vivo AGS xenografted tumors subcutaneously inoculated in athymic BALB/c nude mice. Mechanistically, AdVING4/PTEN exhibited an enhanced effect on upregulation of p53, Ac-p53 (K382), P21, Bax, PUMA, Noxa, cleaved Caspase-9, cleaved Caspase-3 and cleaved PARP as well as downregulation of Bcl-2 in vitro and in vivo. In addition, AdVING4/PTEN synergistically downregulated tumor vessel CD34 expression and reduced microvessel density, and additively inhibited vascular endothelial growth factor (VEGF) expression in vivo. The synergistic tumor suppression elicited by AdVING4/PTEN was closely associated with the synergistic induction of apoptosis possibly via enhancement of endogenous p53 responses through cooperatively facilitating p53’s stability and acetylation, and the synergistic inhibition of tumor angiogenesis probably via overlapping reduction of VEGF through cooperatively downregulating hypoxia inducible factor-1α’s level and transcription activity. Thus, our results indicate that cancer gene therapy combining ING4 and PTEN may constitute a novel and effective therapeutic modality for human gastric cancer and other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tallen G, Riabowol K . Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588: 2728–2742.

    Article  CAS  PubMed  Google Scholar 

  2. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 2003; 63: 2373–2378.

    CAS  PubMed  Google Scholar 

  3. Unoki M, Shen JC, Zheng ZM, Harris CC . Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J Biol Chem 2006; 281: 34677–34686.

    Article  CAS  PubMed  Google Scholar 

  4. Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J . Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett 2008; 271: 105–116.

    Article  CAS  PubMed  Google Scholar 

  5. Gong A, Ye S, Xiong E, Guo W, Zhang Y, Peng W et al. Autophagy contributes to ING4-induced glioma cell death. Exp Cell Res 2013; 319: 1714–1723.

    Article  CAS  PubMed  Google Scholar 

  6. Kim S, Chin K, Gray JW, Bishop JM . A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci USA 2004; 101: 16251–16256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen JC, Unoki M, Ythier D, Duperray A, Varticovski L, Kumamoto K et al. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1. Cancer Res 2007; 67: 2552–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Martinka M, Li G . Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis 2008; 29: 1373–1379.

    Article  PubMed  Google Scholar 

  9. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 2004; 428: 328–332.

    Article  CAS  PubMed  Google Scholar 

  10. Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP et al. The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 2008; 28: 6632–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozer A, Wu LC, Bruick RK . The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA 2005; 102: 7481–7486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D et al. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 2007; 110: 4464–4475.

    Article  CAS  PubMed  Google Scholar 

  13. Hou Y, Zhang Z, Xu Q, Wang H, Xu Y, Chen K . Inhibitor of growth 4 induces NFkappaB/p65 ubiquitin-dependent degradation. Oncogene 2013; 33: 1997–2003.

    Article  PubMed  Google Scholar 

  14. Lu M, Pan C, Zhang L, Ding C, Chen F, Wang Q et al. ING4 inhibits the translation of proto-oncogene MYC by interacting with AUF1. FEBS Lett 2013; 587: 1597–1604.

    Article  CAS  PubMed  Google Scholar 

  15. Song MS, Salmena L, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283–296.

    Article  CAS  PubMed  Google Scholar 

  16. Li DM, Sun H . PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A 1998; 95: 15406–15411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito Y, Swanson X, Mhashilkar AM, Oida Y, Schrock R, Branch CD et al. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther 2003; 10: 1961–1969.

    Article  CAS  PubMed  Google Scholar 

  18. Jin H, Xu CX, Kim HW, Chung YS, Shin JY, Chang SH et al. Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-ras(LA1) mice. Cancer Gene Ther 2008; 15: 275–283.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 2012; 149: 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tamura M, Gu J, Takino T, Yamada KM . Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 1999; 59: 442–449.

    CAS  PubMed  Google Scholar 

  21. Zhang LL, Liu J, Lei S, Zhang J, Zhou W, Yu HG . PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cell Signal 2014; 26: 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider E, Keppler R, Prawitt D, Steinwender C, Roos FC, Thuroff JW et al. Migration of renal tumor cells depends on dephosphorylation of Shc by PTEN. Int J Oncol 2011; 38: 823–831.

    CAS  PubMed  Google Scholar 

  23. Chetram MA, Odero-Marah V, Hinton CV . Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res 2011; 9: 90–102.

    Article  CAS  PubMed  Google Scholar 

  24. Hwang PH, Yi HK, Kim DS, Nam SY, Kim JS, Lee DY . Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett 2001; 172: 83–91.

    Article  CAS  PubMed  Google Scholar 

  25. Song MS, Carracedo A, Salmena L, Song SJ, Egia A, Malumbres M et al. Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 2011; 144: 187–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 2009; 461: 1084–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J et al. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 2013; 341: 399–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Putz U, Howitt J, Doan A, Goh CP, Low LH, Silke J et al. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci Signal 2012; 5: ra70.

    Article  PubMed  Google Scholar 

  29. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  30. Wilson DR . Viral-mediated gene transfer for cancer treatment. Curr Pharm Biotechnol 2002; 3: 151–164.

    Article  CAS  PubMed  Google Scholar 

  31. Brenner MK, Gottschalk S, Leen AM, Vera JF . Is cancer gene therapy an empty suit? Lancet Oncol 2013; 14: e447–e456.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xie Y, Lv H, Sheng W, Miao J, Xiang J, Yang J . Synergistic tumor suppression by adenovirus-mediated inhibitor of growth 4 and interleukin-24 gene cotransfer in hepatocarcinoma cells. Cancer Biother Radiopharm 2011; 26: 681–695.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu Y, Lv H, Xie Y, Sheng W, Xiang J, Yang J . Enhanced tumor suppression by an ING4/IL-24 bicistronic adenovirus-mediated gene cotransfer in human non-small cell lung cancer cells. Cancer Gene Ther 2011; 18: 627–636.

    Article  CAS  PubMed  Google Scholar 

  34. Byun DS, Cho K, Ryu BK, Lee MG, Park JI, Chae KS et al. Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. Int J Cancer 2003; 104: 318–327.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Ye T, Sun D, Maynard J, Deisseroth A . Conditionally replication-competent adenoviral vectors with enhanced infectivity for use in gene therapy of melanoma. Hum Gene Ther 2004; 15: 637–647.

    Article  CAS  PubMed  Google Scholar 

  36. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weidner N . Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995; 36: 169–180.

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Qin SK, Chen BA, Chen HY . Experimental study on antitumor effect of arsenic trioxide in combination with cisplatin or doxorubicin on hepatocellular carcinoma. World J Gastroenterol 2001; 7: 702–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Zhu W, Zhang J, Huo S, Zhou L, Gu Z et al. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem Biophys Res Commun 2010; 395: 275–280.

    Article  CAS  PubMed  Google Scholar 

  40. Ryan HE, Lo J, Johnson RS . HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 1998; 17: 3005–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrara N . VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2: 795–803.

    Article  CAS  PubMed  Google Scholar 

  42. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheok CF, Verma CS, Baselga J, Lane DP . Translating p53 into the clinic. Nat Rev Clin Oncol 2011; 8: 25–37.

    Article  CAS  PubMed  Google Scholar 

  44. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 2003; 3: 117–130.

    Article  CAS  PubMed  Google Scholar 

  45. Mayo LD, Donner DB . A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98: 11598–11603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001; 3: 973–982.

    Article  CAS  PubMed  Google Scholar 

  47. Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X . Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell 2006; 23: 575–587.

    Article  PubMed  Google Scholar 

  48. Zhang X, Wang KS, Wang ZQ, Xu LS, Wang QW, Chen F et al. Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Biophys Res Commun 2005; 331: 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  49. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  50. Welti J, Loges S, Dimmeler S, Carmeliet P . Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 2013; 123: 3190–3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shang B, Cao Z, Zhou Q . Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med 2012; 6: 67–78.

    Article  PubMed  Google Scholar 

  52. Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK et al. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci USA 2001; 98: 4622–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK . Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 363–369.

    CAS  PubMed  Google Scholar 

  54. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL . HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21: 3995–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000; 14: 391–396.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was supported by grants from the National Natural Science Foundation of China (NNSFC) (No. 81372443, 81001016, 81272542 and 81572992) and the Science and Technology Department of Jiangsu Province (No. BL2014039 and BY2015039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Tao or Y Xie.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, X., Xu, C. et al. Synergistic tumor suppression by adenovirus-mediated ING4/PTEN double gene therapy for gastric cancer. Cancer Gene Ther 23, 13–23 (2016). https://doi.org/10.1038/cgt.2015.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.59

This article is cited by

Search

Quick links