Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An HPV-E6/E7 immunotherapy plus PD-1 checkpoint inhibition results in tumor regression and reduction in PD-L1 expression

Abstract

We have investigated if immunotherapy against human papilloma virus (HPV) using a viral gene delivery platform to immunize against HPV 16 genes E6 and E7 (Ad5 [E1-, E2b-]-E6/E7) combined with programmed death-ligand 1 (PD-1) blockade could increase therapeutic effect as compared to the vaccine alone. Ad5 [E1-, E2b-]-E6/E7 as a single agent induced HPV-E6/E7 cell-mediated immunity. Immunotherapy using Ad5 [E1-, E2b-]-E6/E7 resulted in clearance of small tumors and an overall survival benefit in mice with larger established tumors. When immunotherapy was combined with immune checkpoint blockade, an increased level of anti-tumor activity against large tumors was observed. Analysis of the tumor microenvironment in Ad5 [E1-, E2b-]-E6/E7 treated mice revealed elevated CD8+ tumor infiltrating lymphocytes (TILs); however, we observed induction of suppressive mechanisms such as programmed death-ligand 1 (PD-L1) expression on tumor cells and an increase in PD-1+ TILs. When Ad5 [E1-, E2b-]-E6/E7 immunotherapy was combined with anti-PD-1 antibody, we observed CD8+ TILs at the same level but a reduction in tumor PD-L1 expression on tumor cells and reduced PD-1+ TILs providing a mechanism by which combination therapy favors a tumor clearance state and a rationale for pairing antigen-specific vaccines with checkpoint inhibitors in future clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Syrjänen S . Human papillomavirus (HPV) in head and neck cancer. J Clin Virol 2005; 32: S59–S66.

    Article  PubMed  Google Scholar 

  2. Lu Y, Zhang Z, Liu Q, Liu B, Song X, Wang M et al. Immunological protection against HPV16 E7-expressing human esophageal cancer cell challenge by a novel HPV16-E6/E7 fusion protein based-vaccine in a Hu-PBL-SCID mouse model. Biol Pharm Bull 2007; 30: 150–156.

    Article  CAS  PubMed  Google Scholar 

  3. Lee DW, Anderson ME, Wu S, Lee JH . Development of an adenoviral vaccine against E6 and E7 oncoproteins to prevent growth of human papillomavirus-positive cancer. Arch Otolaryngol Head Neck Surg 2008; 134: 1316–1323.

    Article  PubMed  Google Scholar 

  4. Buscema J, Naghashfar Z, Sawada E, Daniel R, Woodruff JD, Shah K . The predominance of human papillomavirus type 16 in vulvar neoplasia. Obstet Gynecol 1988; 71: 601–606.

    CAS  PubMed  Google Scholar 

  5. Hørding U, Junge J, Poulsen H, Lundvall F . Vulvar intraepithelial neoplasia III: a viral disease of undetermined progressive potential. Gynecol Oncol 1995; 56: 276–279.

    Article  PubMed  Google Scholar 

  6. Van Beurden M, Ten Kate FJW, Smits HL, Berkhout RJM, De Craen AJM, Van der Vange N et al. Multifocal vulvar intraepithelial neoplasia grade III and multicentric lower genital tract neoplasia is associated with transcriptionally active human papillomavirus. Cancer 1995; 75: 2879–2884.

    Article  CAS  PubMed  Google Scholar 

  7. Daling JR, Madeleine MM, Schwartz SM, Shera KA, Carter JJ, McKnight B et al. A population-based study of squamous cell vaginal cancer: HPV and cofactors. Gynecol Oncol 2002; 84: 263–270.

    Article  CAS  PubMed  Google Scholar 

  8. Devaraj K, Gillison ML, Wu T-C . Development of HPV vaccines for HPV-associated head and neck squamous cell carcinoma. Crit Rev Oral Biol Med 2003; 14: 345–362.

    Article  PubMed  Google Scholar 

  9. Marur S, D’Souza G, Westra WH, Forastiere AA . HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 2010; 11: 781–789.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Psyrri A, DiMaio D . Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol 2008; 5: 24–31.

    Article  CAS  PubMed  Google Scholar 

  11. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010; 363: 24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lehtinen M, Dillner J . Clinical trials of human papillomavirus vaccines and beyond. Nat Rev Clin Oncol 2013; 10: 400–410.

    Article  CAS  PubMed  Google Scholar 

  13. Monie A, Tsen S-WD, Hung C-F, Wu T-C, Therapeutic HPV . DNA vaccines. Expert Rev Vaccines 2009; 8: 1221–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bosch FX, Broker TR, Forman D, Moscicki A-B, Gillison ML, Doorbar J et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine 2013; 31: H1–H31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kawana K, Adachi K, Kojima S, Kozuma S, Fujii T . Therapeutic human papillomavirus (HPV) vaccines: a novel approach. Open Virol J 2012; 6: 264–269.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wieking BG, Vermeer DW, Spanos WC, Lee KM, Vermeer P, Lee WT et al. A non-oncogenic HPV 16 E6/E7 vaccine enhances treatment of HPV expressing tumors. Cancer Gene Ther 2012; 19: 667–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenwald RJ, Freeman GJ, Sharpe AH . The B7 family revisited. Annu Rev Immunol 2005; 23: 515–548.

    Article  PubMed  Google Scholar 

  18. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  21. Flies DB, Sandler BJ, Sznol M, Chen L . Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 2011; 84: 409–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zou W, Chen L . Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467–477.

    Article  CAS  PubMed  Google Scholar 

  23. Song M, Chen D, Lu B, Wang C, Zhang J, Huang L et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One 2013; 8: e65821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 2013; 73: 1733–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ukpo OC, Thorstad WL, Lewis JS . B7-H1 expression model for immune evasion in human papillomavirus-related oropharyngeal squamous cell carcinoma. Head Neck Pathol 2013; 7: 113–121.

    Article  PubMed  Google Scholar 

  26. Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ . Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res 2014; 74: 4042–4052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curran MA, Montalvo W, Yagita H, Allison JP . PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010; 107: 4275–4280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li B, Simmons A, Du T, Lin C, Moskalenko M, Gonzalez-Edick M et al. Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies. Clin Immunol 2009; 133: 184–197.

    Article  CAS  PubMed  Google Scholar 

  29. Amalfitano A, Hauser MA, Hu H, Serra D, Begy CR, Chamberlain JS . Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J Virol 1998; 72: 926–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomayko MM, Reynolds CP . Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24: 148–154.

    Article  CAS  PubMed  Google Scholar 

  31. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 2010; 107: 7875–7880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012; 72: 917–927.

    Article  CAS  PubMed  Google Scholar 

  33. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369: 134–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolchok JD, Kluger H, Callahan MK, Postow Ma, Rizvi Na, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 2015; 16: 257–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 2008; 105: 3005–3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012; 4: 127ra37–127ra37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of Anti–PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M, Hercend T et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 1992; 176: 327–337.

    Article  CAS  PubMed  Google Scholar 

  41. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DAA . Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 2002; 32: 2255–2263.

    Article  CAS  PubMed  Google Scholar 

  42. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G et al. Role of LAG-3 in regulatory T cells. Immunity 2004; 21: 503–513.

    Article  CAS  PubMed  Google Scholar 

  43. Workman CJ, Cauley LS, Kim I-J, Blackman MA, Woodland DL, Vignali DAA et al. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol 2004; 172: 5450–5455.

    Article  CAS  PubMed  Google Scholar 

  44. Hannier S, Tournier M, Bismuth G, Triebel F . CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol 1998; 161: 4058–4065.

    CAS  PubMed  Google Scholar 

  45. Demeure CE, Wolfers J, Martin-Garcia N, Gaulard P, Triebel FT . Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell-cell contacts. Eur J Cancer 2001; 37: 1709–1718.

    Article  CAS  PubMed  Google Scholar 

  46. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10: 29–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Winston Witcomb for management and care of the animals. We also thank Carol Jones for management of grant activities. This study was funded by Small Business Innovative Research (SBIR) Grants 1R43DE021973-01 and 2R44DE021973-02 from the National Institute of Dental and Cranial Research (NIDCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Gabitzsch.

Ethics declarations

Competing interests

AER, YL, JPB, ESG and FRJ are employees of Etubics and have equity and/or stock options in the company. JHL is a member of the Etubics Scientific Advisory Board and has stock options in the company.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, A., Latchman, Y., Balint, J. et al. An HPV-E6/E7 immunotherapy plus PD-1 checkpoint inhibition results in tumor regression and reduction in PD-L1 expression. Cancer Gene Ther 22, 454–462 (2015). https://doi.org/10.1038/cgt.2015.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.40

This article is cited by

Search

Quick links