Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer

Abstract

Neutrophil extracellular traps (NETs) are formed when neutrophils expel their DNA, histones and intracellular proteins into the extracellular space or circulation. NET formation is dependent on autophagy and is mediated by citrullination of histones to allow for the unwinding and subsequent expulsion of DNA. NETs have an important role in the pathogenesis of several sterile inflammatory diseases, including malignancy, therefore we investigated the role of NETs in the setting of pancreatic ductal adenocarcinoma (PDA). Neutrophils isolated from two distinct animal models of PDA had an increased propensity to form NETs following stimulation with platelet activating factor (PAF). Serum DNA, a marker of circulating NET formation, was elevated in tumor bearing animals as well as in patients with PDA. Citrullinated histone H3 expression, a marker of NET formation, was observed in pancreatic tumors obtained from murine models and patients with PDA. Inhibition of autophagy with chloroquine or genetic ablation of receptor for advanced glycation end products (RAGE) resulted in decreased propensity for NET formation, decreased serum DNA and decreased citrullinated histone H3 expression in the pancreatic tumor microenvironment. We conclude that NETs are upregulated in pancreatic cancer through RAGE-dependent/autophagy mediated pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532–1535.

    Article  CAS  Google Scholar 

  2. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 2012; 109: 13076–13081.

    Article  CAS  Google Scholar 

  3. Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I et al. Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One 2011; 6: e29318.

    Article  CAS  Google Scholar 

  4. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y . PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207: 1853–1862.

    Article  CAS  Google Scholar 

  5. Itakura A, McCarty OJ . Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol 2013; 305: C348–C354.

    Article  CAS  Google Scholar 

  6. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011; 21: 290–304.

    Article  CAS  Google Scholar 

  7. Buchser WJ, Laskow TC, Pavlik PJ, Lin HM, Lotze MT . Cell-mediated autophagy promotes cancer cell survival. Cancer Res 2012; 72: 2970–2979.

    Article  CAS  Google Scholar 

  8. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 2014; 4: 905–913.

    Article  CAS  Google Scholar 

  9. Hashimoto D, Blauer M, Hirota M, Ikonen NH, Sand J, Laukkarinen J . Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014; 50: 1382–1390.

    Article  CAS  Google Scholar 

  10. Kang R, Tang D . Autophagy in pancreatic cancer pathogenesis and treatment. Am J Cancer Res 2012; 2: 383–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 2008; 99: 1813–1819.

    Article  CAS  Google Scholar 

  12. Kang R, Tang D, Schapiro NE, Loux T, Livesey KM, Billiar TR et al. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2014; 33: 567–577.

    Article  CAS  Google Scholar 

  13. Vernon PJ, Loux TJ, Schapiro NE, Kang R, Muthuswamy R, Kalinski P et al. The receptor for advanced glycation end products promotes pancreatic carcinogenesis and accumulation of myeloid-derived suppressor cells. J Immunol 2013; 190: 1372–1379.

    Article  CAS  Google Scholar 

  14. Kang R, Tang D, Lotze MT, Zeh HJ 3rd . AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy 2012; 8: 989–991.

    Article  CAS  Google Scholar 

  15. DiNorcia J, Lee MK, Moroziewicz DN, Winner M, Suman P, Bao F et al. RAGE gene deletion inhibits the development and progression of ductal neoplasia and prolongs survival in a murine model of pancreatic cancer. J Gastrointest Surg 2012; 16: 104–112.

    Article  Google Scholar 

  16. Kang R, Tang D, Lotze MT, Zeh HJ 3rd . RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy 2011; 7: 442–444.

    Article  Google Scholar 

  17. Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ 3rd . The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Signal 2011; 15: 2175–2184.

    Article  CAS  Google Scholar 

  18. Kang R, Tang D, Loze MT, Zeh HJ . Apoptosis to autophagy switch triggered by the MHC class III-encoded receptor for advanced glycation endproducts (RAGE). Autophagy 2011; 7: 91–93.

    Article  Google Scholar 

  19. Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 2010; 17: 666–676.

    Article  CAS  Google Scholar 

  20. Takada M, Hirata K, Ajiki T, Suzuki Y, Kuroda Y . Expression of receptor for advanced glycation end products (RAGE) and MMP-9 in human pancreatic cancer cells. Hepatogastroenterology 2004; 51: 928–930.

    CAS  PubMed  Google Scholar 

  21. Takada M, Koizumi T, Toyama H, Suzuki Y, Kuroda Y . Differential expression of RAGE in human pancreatic carcinoma cells. Hepatogastroenterology 2001; 48: 1577–1578.

    CAS  PubMed  Google Scholar 

  22. Pieterse E, Hofstra J, Berden J, Herrmann M, Dieker J, van der Vlag J . Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin Exp Immunol 2014; 179: 68–74.

    Article  Google Scholar 

  23. Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ . Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis. (e-pub ahead of print).

  24. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15: 623–625.

    Article  CAS  Google Scholar 

  25. Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z . Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 2009; 9: 40.

    Article  Google Scholar 

  26. Chang X, Hou X, Pan J, Fang K, Wang L, Han J . Investigating the pathogenic role of PADI4 in oesophageal cancer. Int J Biol Sci 2011; 7: 769–781.

    Article  CAS  Google Scholar 

  27. Schwarzenbach H, Stoehlmacher J, Pantel K, Goekkurt E . Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci 2008; 1137: 190–196.

    Article  CAS  Google Scholar 

  28. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61: 1659–1665.

    CAS  Google Scholar 

  29. van der Vaart M, Pretorius PJ . Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci 2008; 1137: 18–26.

    Article  CAS  Google Scholar 

  30. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 289: 3869–3875.

    Article  CAS  Google Scholar 

  31. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6: 224ra224.

    Article  Google Scholar 

  32. Magistrelli P, Neri M, Granone P, Cesario A, Paleari L, Russo P . K-ras mutations in circulating DNA from pancreatic and lung cancers: bridging methodology for a common validation of the molecular diagnosis value. Pancreas 2008; 37: 101–102.

    Article  Google Scholar 

  33. Diaz LA Jr., Bardelli A . Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014; 32: 579–586.

    Article  Google Scholar 

  34. Mouliere F, Thierry AR . The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin Biol Ther 2012; 12: S209–S215.

    Article  CAS  Google Scholar 

  35. Marchese R, Muleti A, Pasqualetti P, Bucci B, Stigliano A, Brunetti E et al. Low correspondence between K-ras mutations in pancreatic cancer tissue and detection of K-ras mutations in circulating DNA. Pancreas 2006; 32: 171–177.

    Article  CAS  Google Scholar 

  36. Lee TH, Montalvo L, Chrebtow V, Busch MP . Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 2001; 41: 276–282.

    Article  CAS  Google Scholar 

  37. Hashiba M, Huq A, Tomino A, Hirakawa A, Hattori T, Miyabe H et al. Neutrophil extracellular traps in patients with sepsis. J Surg Res 2014; 194: 248–254.

    Article  Google Scholar 

  38. Li Y, Liu B, Fukudome EY, Lu J, Chong W, Jin G et al. Identification of citrullinated histone H3 as a potential serum protein biomarker in a lethal model of lipopolysaccharide-induced shock. Surgery 2011; 150: 442–451.

    Article  Google Scholar 

  39. Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. American journal of physiology. Lung Cell Mol Physiol 2013; 304: L342–L349.

    Article  CAS  Google Scholar 

  40. Wittwer C, Boeck S, Heinemann V, Haas M, Stieber P, Nagel D et al. Circulating nucleosomes and immunogenic cell death markers HMGB1, sRAGE and DNAse in patients with advanced pancreatic cancer undergoing chemotherapy. Int J Cancer 2013; 133: 2619–2630.

    CAS  PubMed  Google Scholar 

  41. Chung HW, Lim JB, Jang S, Lee KJ, Park KH, Song SY . Serum high mobility group box-1 is a powerful diagnostic and prognostic biomarker for pancreatic ductal adenocarcinoma. Cancer Sci 2012; 103: 1714–1721.

    Article  CAS  Google Scholar 

  42. Han YT, Kim K, Choi GI, An H, Son D, Kim H et al. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). Eur J Med Chem 2014; 79: 128–142.

    Article  CAS  Google Scholar 

  43. Brodeur MR, Bouvet C, Bouchard S, Moreau S, Leblond J, Deblois D et al. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PloS One 2014; 9: e85922.

    Article  Google Scholar 

  44. Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D . PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Associ Disord 2011; 25: 206–212.

    Article  CAS  Google Scholar 

  45. Jiao L, Weinstein SJ, Albanes D, Taylor PR, Graubard BI, Virtamo J et al. Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res 2011; 71: 3582–3589.

    Article  CAS  Google Scholar 

  46. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 1996; 97: 238–243.

    Article  CAS  Google Scholar 

  47. Giron-Gonzalez MD, Morales-Portillo A, Salinas-Castillo A, Lopez-Jaramillo FJ, Hernandez-Mateo F, Santoyo-Gonzalez F et al. Engineered glycated amino dendritic polymers as specific nonviral gene delivery vectors targeting the receptor for advanced glycation end products. Bioconjug Chem 2014; 25: 1151–1161.

    Article  Google Scholar 

  48. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10: 136–144.

    Article  CAS  Google Scholar 

  49. Fuchs TA, Brill A, Wagner DD . Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777–1783.

    Article  CAS  Google Scholar 

  50. Thorson CM, Van Haren RM, Ryan ML, Curia E, Sleeman D, Levi JU et al. Pre-existing hypercoagulability in patients undergoing potentially curative cancer resection. Surgery 2014; 155: 134–144.

    Article  Google Scholar 

  51. Munoz Martin AJ, Garcia Alfonso P, Ruperez Blanco AB, Perez Ramirez S, Blanco Codesido M, Martin Jimenez M . Incidence of venous thromboembolism (VTE) in ambulatory pancreatic cancer patients receiving chemotherapy and analysis of Khorana's predictive model. Clin Transl Oncol 2014; 16: 927–930.

    Article  CAS  Google Scholar 

  52. Demers M, Wagner DD . Neutrophil extracellular traps: a new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology 2013; 2: e22946.

    Article  Google Scholar 

  53. Wen F, Shen A, Choi A, Gerner EW, Shi J . Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res 2013; 73: 4256–4266.

    Article  CAS  Google Scholar 

  54. Grosse-Steffen T, Giese T, Giese N, Longerich T, Schirmacher P, Hansch GM et al. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clin Dev Immunol 2012; 2012: 720768.

    Article  Google Scholar 

  55. Gaida MM, Steffen TG, Gunther F, Tschaharganeh DF, Felix K, Bergmann F et al. Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastase-mediated degradation of E-cadherin in pancreatic tumors. Eur J Immunol 2012; 42: 3369–3380.

    Article  CAS  Google Scholar 

  56. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 2010; 16: 219–223.

    Article  CAS  Google Scholar 

  57. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 2013 (e-pub ahead of print).

  58. Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol 2014; 233: 294–307.

    Article  CAS  Google Scholar 

  59. Sangaletti S, Tripodo C, Vitali C, Portararo P, Guarnotta C, Casalini P et al. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 2014; 4: 110–129.

    Article  CAS  Google Scholar 

  60. Berger-Achituv S, Brinkmann V, Abed UA, Kuhn LI, Ben-Ezra J, Elhasid R et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 2013; 4: 48.

    Article  Google Scholar 

  61. Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 2014; 19: 637–638.

    Article  Google Scholar 

  62. Slack JL, Causey CP, Thompson PR . Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell Mol Life Sci 2011; 68: 709–720.

    Article  CAS  Google Scholar 

  63. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD et al. Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC cancer 2012; 12: 500.

    Article  CAS  Google Scholar 

  64. Cui X, Witalison EE, Chumanevich AP, Chumanevich AA, Poudyal D, Subramanian V et al. The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest. PloS One 2013; 8: e53791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant number T32CA113263 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. This projected used the UPCI Animal Research Facility that is supported in part by award P30CA047904. This work was supported by grant number T32CA113263 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H J Zeh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boone, B., Orlichenko, L., Schapiro, N. et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 22, 326–334 (2015). https://doi.org/10.1038/cgt.2015.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.21

This article is cited by

Search

Quick links