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The addition of recombinant vaccinia HER2/neu to oncolytic
vaccinia-GMCSF given into the tumor microenvironment
overcomes MDSC-mediated immune escape and
systemic anergy
CR de Vries1, CE Monken2 and EC Lattime3

Effective immunotherapeutic strategies require the ability to generate a systemic antigen-specific response capable of impacting
both primary and metastatic disease. We have built on our oncolytic vaccinia a granulocyte-macrophage colony-stimulating
factor (GM-CSF) strategy by adding recombinant tumor antigen to increase the response in the tumor microenvironment and
systemically. In the present study, orthotopic growth of a syngeneic HER2/neu-overexpressing mammary carcinoma in FVB/N mice
(NBT1) was associated with increased Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs) both systemically and in the tumor
microenvironment. This MDSC population had inhibitory effects on the HER2/neu-specific Th1 immune response. VVneu and
VVGMCSF are recombinant oncolytic vaccinia viruses that encode HER2/neu and GM-CSF, respectively. Naive FVB mice vaccinated
with combined VVneu and VVGMCSF given systemically developed systemic HER2/neu-specific immunity. NBT1-bearing mice
became anergic to systemic immunization with combined VVneu and VVGMCSF. Intratumoral VVGMCSF failed to result in systemic
antitumor immunity until combined with intratumoral VVneu. Infection/transfection of the tumor microenvironment with
combined VVGMCSF and VVneu resulted in development of systemic tumor-specific immunity, reduction in splenic and tumor
MDSC and therapeutic efficacy against tumors. These studies demonstrate the enhanced efficacy of oncolytic vaccinia virus
recombinants encoding combined tumor antigen and GM-CSF in modulating the microenvironment of MDSC-rich tumors.
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INTRODUCTION
The goal of tumor immunotherapy is the development of moda-
lities given alone or in combination that result in the generation of
an effective systemic tumor-specific immune response by the host
that can overcome immune escape mechanisms. The identifica-
tion of immunogenic targets unique to or overexpressed by tumor
cells is critical to achieving this goal. The HER2/neu oncogene
encodes human epidermal growth factor receptor 2 (HER2/neu),
a member of the epidermal growth factor receptor family of
transmembrane tyrosine kinase receptors, which participates in
processes including physiology, proliferation and differentiation of
various human tissues.1,2 Overexpression of HER2/neu is found in
~ 20% of invasive breast cancers, and is associated with a more
invasive phenotype and a poorer prognosis.3 Development of
an active immune response using a vaccine targeting HER2/
neu represents an attractive immunotherapeutic strategy for
overcoming immune escape mechanisms induced by the tumor
microenvironment.
Myeloid-derived suppressor cells (MDSCs), a population of

immature myeloid cells that are increased systemically and in the
tumor microenvironment of both murine cancer models and
human malignancies, are prominent contributors to tumor

immune escape.4,5 This heterogeneous population is characterized
phenotypically in mice by the cell surface antigens CD11b and
Gr-1.5 Gr-1 encompasses two subtypes, Ly-6C and Ly-6G, which
have been used to further differentiate MDSCs into CD11b+Ly-
6Chigh Ly-6G− monocytic (mMDSC) and CD11b+Ly-6ClowLy-6G+

granulocytic (gMDSC) subpopulations, respectively.6,7 Consistent
with their heterogeneous phenotype, MDSCs suppress the
antitumor immune response through multiple mechanisms.8

MDSCs interfere with lymphocyte proliferation via deprivation of
essential amino acids, such as arginine and cysteine.7,9,10 They also
mediate oxidative stress via production of reactive oxygen species
and peroxynitrate. This leads to nitration of tyrosine in CD8 and
the T-cell receptor, ultimately changing the rigidity of the T-cell
receptor.11 Furthermore, MDSCs support induction of other
immune inhibitory populations such as regulatory T cells (Tregs)
through the production of transforming growth factor-β and
interleukin-10.12–15 Given these immune-suppressive effects, therapies
that can overcome systemic anergy induced by MDSCs have
generated great interest.
Studies from our group were the first to develop and test

recombinant vaccinia vectors encoding the immune-enhancing
granulocyte-macrophage colony-stimulating factor (GM-CSF) for
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the localized treatment of solid tumors. In preclinical studies,
we demonstrated that vaccinia and vaccinia recombinants were
effective in infecting/transfecting tumors and, importantly, that
despite the immunogenicity of the vaccinia vector, high levels of
transfection could be obtained following repeated injections of
tumor in mice16 and subsequently in patients with recurrent
superficial melanoma.17 We developed and took clinical VVGMCSF
into phase I trials in melanoma.18 Subsequent to our studies, this
recombinant (JX-594) was shown to have antitumor activity in
preclinical models and clinical trials in a number of diseases.19,20

In the present study using orthotopic growth of an aggressive
HER2/neu-expressing murine tumor characterized by high levels
of CD11b+Gr-1+ MDSCs in the tumor microenvironment and
systemically that suppressed HER2/neu-specific Th1, we show that
intratumoral treatment with the oncolytic VVGMCSF is ineffective
at reducing tumor growth nor does it lead to the development of a
systemic tumor-specific immune response. However, when com-
bined with a neu-encoding vaccinia VVneu and administered into
the tumor microenvironment, mice develop systemic anti-neu
immunity, significant reduction in tumoral and systemic MDSC and
manifest a major antitumor response. The same virus com-
bination (vaccine) fails to generate a similar response when given
systemically in NBT1-bearing mice. We characterize the presence
and function of the MDSC response and the resultant cytotoxic T
lymphocyte (CTL) and interferon responses to HER2/neu. These
results point to the ability of the tumor microenvironment to both
promote immune escape and act as an effective vaccination site
for tumor antigen-encoding oncolytic viruses that can result in a
systemic immune response capable of mediating tumor regression.

MATERIALS AND METHODS
Cell culture
The HER2/neu-expressing NBT1 mammary tumor cell line was derived by
serial cell culture of tumor cells obtained from a spontaneous breast tumor
that arose in a FVB/neuT mouse transgenic for a HER2/neu receptor that is
constitutively activated by a point mutation in the transmembrane region.
NBT1 was maintained in media composed of CMRL-1066 (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum, 2mM

L-glutamine, 50 IU ml− 1 penicillin/streptomycin and 4 μM dexamethasone.
Splenic cell cultures used in immune analyses were carried out using a
supplemented RPMI-1640 media as described.21 The Sf9 and Sf21 cell lines
(Invitrogen) were maintained in Grace’s supplemented medium (Invitrogen)
supplemented with 10% fetal bovine serum and 50 IUml− 1 penicillin/
streptomycin. HER2/neu Sf21 cell lysates used for in vitro restimulation of
the CTL assay described below were prepared by resuspending cells in
RPMI medium with protease inhibitor cocktail (Sigma-Aldrich, St Louis,
MO), lysing via four freeze/thaw cycles, sonicating for 2 min and centri-
fugating for 15min at 13 500 rcf.

Construction of recombinant vaccinia virus expressing HER2/neu
(VVneu)
The rat neu complementary DNA (cDNA) was cloned from pSV2-neuNT
(provided by RA Weinberg), ligated into pBluescript (Stratagene, La Jolla,
CA, USA) using SalI and Hind III restriction sites, and then removed from
pBluscript using SalI and NotI. It was cloned into vaccinia recombination
plasmid pSC11/9. VVGMCSF was prepared as previously described.21–23

VVβGal was provided as a negative control by Dr Laurence Eisenlohr
(Thomas Jefferson University, Philadelphia, PA, USA).

Construction of recombinant Baculovirus expressing rat HER2/neu
The rat neu cDNA-coding sequence was assembled in the pFASTBac/CT-
TOPO recombination vector (Invitrogen). Rat neu-transforming cDNA was
excised from a vaccinia recombination plasmid containing the full-length
rat neuNT cDNA sequence24 in the vector pSC11/9 using NotI and SalI
restriction enzymes. The 4727 bp rat neu DNA was gel purified and then
ligated to pBluescript II SK(+) (Stratagene) at Not/Sal to produce plasmid
BSratneuNT. This neuNT-containing plasmid was used to generate three
DNA fragments which, when ligated together, prepared the rat neuNT-
coding sequences for ligation into pFASTBac/CT-TOPO. pBSratneuNT was

first digested with HincII, which cut at two sites: a HincII site at residue 1599
and the SalI site at the 3'-end of the neuNT cDNA, residue 4622. HincII
digestion released a 3023-bp fragment, residues 1599–4622, which con-
tained two problematic NcoI sites. The HincII-cut vector was gel purified,
religated and cloned and then digested with NcoI. Filling in the NcoI site,
located at position − 19, with T4 DNA polymerase followed by ligation
transformed the NcoI site into a NsiI site, creating plasmid BSNeuNsi.
Plasmid BSNeuNsi was digested with both SbfI and SalI releasing a 1366-bp
fragment and leaving 338 bp of cDNA containing 233 bp of the 5'-coding
sequence. Plasmid pBSratneuNT was next digested with both SbfI and SalI
releasing a 4389-bp fragment, residues 234–4622, which, after gel purifica-
tion, was cut with NcoI to generate a 2775-bp middle fragment comprising
residues 234–3008. Lastly, pBSratneuNT was PCR-amplified using primers
NTNco (5'-gcatagcggccgccatggacagtaccttctaccgtt-3') and NTSal (5'-ctacg
cgtcgacacaggtacatccaggcctaggtac-3') to produce a 768-bp fragment of the
neu-coding sequence comprising residues 3009–3777. At its 3' end, this
amplicon contained a SalI site for cloning and a final residue codon
mutation of GTA to GTG. The NTNco/NTSal PCR amplicon—residues 3009–
3777—was used without subcloning in a three-way ligation, with the SbfI/
NcoI middle fragment—residues 234–3008—and the plasmid BSNeuNsi—
residues − 105 to 233—cut with SbfI/SalI. Following transformation, clone
selection and DNA sequencing, a correct full-length neuNT cDNA clone
was identified, pBSNeuNsiSal. This plasmid was cut with both NsiI and SalI
to release the neuNT cDNA and was treated with mung bean nuclease to
remove 3' and 5' overhangs, generating a blunt-end cDNA. Treatment with
Antarctic alkaline phosphatase removed terminal phosphates allowing
neuNT cDNA to be TOPO cloned into pFASTBac/CT-TOPO vector. The
recombinant bacmid was transfected into the Sf9 cell line to produce
P1baculovirus stock expressing HER2/neu (bac HER2/neu), which was
further amplified with several rounds of infection of Sf21 cells. Bac HER2/
neu was used to infect Sf21 cells. Infected HER2/neu Sf21 cells were
pelleted and used to generate Sf21neu lysate for restimulation and
enzyme-linked immunosorbent assay as described below.

Animal experiments
Four to 6-week-old FVB/N mice (Jackson Labs, Bar Harbor, ME, USA) were
maintained in a high-efficiency particulate air-filtered cage system for at
least 1 week prior to use. For in vivo experiments involving tumor-bearing
mice, anesthetized FVB/N mice were injected using a 27-gauge tuberculin
syringe (Becton Dickinson, Franklin Lakes, NJ, USA) into the right second
mammary fat pad with 2 × 106 NBT1 cells suspended in Hanks balanced
salt solution (Sigma-Aldrich) as previously described.25 For in vivo
vaccination studies in naive FVB/N mice, mice received 2 subcutaneous
(s.c.) or intra-mammary fat pad (i.m.f.) injections, 2 weeks apart, using a
cocktail of 1 × 106 plaque-forming unit (p.f.u.) VVGMCSF plus either
1 × 106 p.f.u. VVneu or VVβGal using a 27-gauge tuberculin syringe. In
in vivo vaccination studies of NBT1 tumor-bearing mice, mice were treated
with 2 s.c. or intratumoral (i.t.) injections, 2 weeks apart, of 1 × 106 p.f.u.
VVGMCSF plus 7.5 μg keyhole limpet hemocyanin (KLH) (Sigma-Aldrich)
with either 1 × 106 p.f.u. VVneu or VVβGal. For vaccinations, i.m.f. injections
were made directly into the number 2 fat pad. All i.t. injections were made
directly into the mammary fat pad tumors. S.c. injections were placed in
the contralateral (left) groin. All viral injections used the same total of
2 × 106 vaccinia p.f.u. Five animals per group were used for each indepen-
dent in vivo experiment. Animal experiments were conducted in accor-
dance with protocols approved by the Rutgers Institutional Animal Care
and Use Committee.

CTL assays
CTL assays were performed as previously described,21,26 with several modi-
fications. Briefly, effector cells were prepared from splenocytes, vaccination
site-draining lymph nodes (VDN) or tumor-draining lymph nodes of
treated/vaccinated FVB/N mice. Spleens or lymph nodes were homo-
genized and red blood cells were lysed using ammonium chloride buffer
(ACK buffer, 0.15M NH4Cl, 1.0mM KHCO3 and 0.1mM EDTA), washed with
tissue culture medium (TCM) and filtered through a 70-μm nylon mesh (BD
Biosciences, San Jose, CA, USA). Effector cells were resuspended at 7 × 106

cells ml− 1 and cultured with 3× 106 cells ml− 1 of irradiated (25 Gray)
splenocytes from naive FVB/N mice that had been incubated overnight in
50ml conicals at 37 °C at 4 × 106 cells ml− 1 in TCM+2-mercaptoethanol with
300 μgml− 1 of the RNEU420–429 (PDSLRDLSVF) (Genscript, Piscataway, NJ,
USA) immunodominant epitope of the rat neu protein,27 lymphocytic
choriomeningitis virus nucleoprotein NP118–126 (RPQASGVYM) control
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peptide (Genscript) or indicated cell lysates. Restimulation cultures were in
a total of 2 ml of TCM+2-mercaptoethanol in 24-well plates for 5 days at
37 °C, 5% CO2. On day 3 of restimulation, 50 μl of supernatant was assayed
for interferon-γ using an enzyme-linked immunosorbent assay, as
described previously.28 On day 5, stimulated effector cells were collected
and cultured for 4 h with 51Cr-labeled NBT1 cells as targets. Hundred μl of
supernatant were removed and 51Cr release of target cells was measured
with a gamma counter (Packard Bioscience, Meriden, CT, USA). Percent-
specific lysis was calculated from the formula [(experimental release−
spontaneous release) × 100/(maximal release in 1% SDS− spontaneous
release)].

Magnetic bead depletion of MDSCs
MDSCs were depleted from the splenocyte population of NBT1 tumor-
bearing mice using a mouse MDSC isolation kit (Miltenyi Biotec, Auburn,
CA, USA) as per the manufacturer’s instructions. Briefly, 1 × 108 splenocytes
were resuspended in 350 μl MACS buffer (phosphate-buffered saline, 0.5%
bovine serum albumin and 2mM EDTA) and blocked for 10min with 50 μl
FcR blocking reagent at 4 °C. Hundred μl of anti-Ly6G-biotin was added
and incubated for 10min at 4 °C. Cells were washed in 10ml MACS buffer
and resuspended in 100 μl MACS buffer. Two hundred μl anti-biotin
microbeads were added and incubated at 4 °C for 15min. Magnetic
separation was performed using LS disposable column and MACS
Magnetic separator (Miltenyi Biotec). The negative fraction was collected
and restimulated as described above. MDSC depletion was validated using
flow cytometry.

Flow cytometry
Flow cytometry for RNEU420–429 tetramer (provided by the NIAID Tetramer
Facility, Atlanta, GA, USA) was conducted as described previously.21 Briefly,
effectors from treated mice were restimulated for 5 days as described
above. Effectors were collected, washed and resuspended in phosphate-
buffered saline/5% fetal bovine serum with 0.1% w/v sodium azide at
1 × 106 cells per 100 μl. Cells were stained with anti-CD8α-fluorescein
isothiocyanate at the manufacturer’s recommended concentration (BD
Biosciences) and the RNEU420–429-specific tetramer labeled with phycoer-
ythrin (1:100 dilution). Flow cytometry for MDSC was conducted on spleno-
cytes, lymph node cells and tumor suspensions straight ex vivo. Tumor
suspensions were prepared as described previously,29 with modifications.
Tumors were cut into small pieces and incubated at 37 °C with gentle
shaking for 20min in 5 ml RPMI with collagenase D (1 mgml− 1, Roche,
Diagnostics, Indianapolis, MO). Tumor pieces were dissociated with a metal
strainer, washed in TCM+2-mercaptoethanol, red blood cells were lysed
using ACK buffer, washed again with TCM and filtered through a 70-μm
nylon mesh (BD Biosciences). Cells were stained using anti-Gr-1 PE
(eBioscience, San Diego, CA, USA), CD11b fluorescein isothiocyanate
(eBioscience), anti-Ly6G APC (BD Biosciences) and anti-Ly6C PE-Cy7
(eBioscience). Flow cytometry data were acquired using a FC-500 flow
cytometer (Beckman Coulter, Miami, FL, USA) and analyzed using CXP
(Beckman Coulter) provided by the CINJ flow cytometry shared resource.

Statistical analysis
Results were expressed as mean± s.e. Significance for experiments with
42 conditions (Po0.05) was determined by analysis of variance with the
post hoc Tukey multiple comparisons test using the InStat software
package (GraphPad Software, La Jolla, CA, USA). Significance for
experiments with two conditions was determined using the Student’s
T-test, two-tailed with unequal variances in Microsoft Excel (Microsoft,
Redmond, WA, USA). Kaplan–Meier survival curves were generated using
Prism (GraphPad Software), with significance calculated using the log-rank
(Mantel–Cox) test and correction for multiple comparisons using the
Bonferroni method.

RESULTS
Vaccination of naive FVB/N mice results in a systemic HER2 MHC
class I epitope-specific CTL response
We hypothesized that vaccination of a naive host with a vaccinia
construct expressing HER2/neu would induce an antigen-specific
Th1 immune response, regardless of the site of vaccination. We
utilized i.m.f. injection or contralateral s.c. injection of VVneu

+VVGMCSF in naive FVB/N mice. Two weeks after the final vaccina-
tion, splenocytes and draining lymph nodes of the vaccination site
(VDN) were restimulated with irradiated splenocytes from naive
female FVB/N mice that had been pulsed with immunodominant
RNEU420–429 peptide (Figure 1a). Both s.c. and i.m.f. vaccination
with VVneu and VVGMCSF resulted in increased percent-specific
lysis of 51Cr-labeled NBT1 tumor cells by splenic CTLs in vitro,
when compared with controls (Figure 1b).

MDSCs suppress the systemic antitumor immune response
MDSCs are a heterogeneous population of immature granulocytic
and monocytic cells that have inhibitory effects on tumor-specific
T-cell activation and function.5,6,30 Given previous studies demon-
strating the importance of a type 1 antitumor response in effective
immune therapies,21,28 we hypothesized that MDSCs inhibited a
systemic antitumor immune response in the NBT1 model. To
determine whether the presence of orthotopic NBT1 tumor
affected levels of MDSC in FVB/N mice, we injected FVB/N mice
with NBT1 cells in the right number 2 mammary fat pad. After
4–5 weeks of tumor growth, we used flow cytometry to measure
levels of Gr-1, Ly-6G, Ly-6C and CD11b on cells from spleen and
tumor. The CD11b+Gr1+ population was significantly increased in
the systemic population of tumor-bearing mice compared with
naive mice (Figure 2a). A large population of CD11b+Ly-6CintLy6G+

cells was detected, a phenotype consistent with granulocytic
MDSCs (gMDSCs, Figure 2b).
To demonstrate the immune-suppressive nature of the MDSCs

induced by NBT1, we used a MDSC magnetic bead isolation kit
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Figure 1. Vaccination of naive FVB/N mice with VVneu induces a
systemic HER2-specific Th1 response. (a) Female FVB/N mice were
injected twice, 2 weeks apart, with VVneu+VVGMCSF (either
subcutaneous (s.c.) or intra-mammary fat pad (i.m.f.)), VVBGal
+VVGMCSF (i.m.f.) or vehicle (i.m.f.). Two weeks after the second
and final vaccination, spleens were restimulated with irradiated
splenocytes from naive female FVB/N mice that had been pulsed
with immunodominant RNEU420–429 peptide. (b) NBT1 tumor-
specific systemic (spleen) cytotoxic T lymphocyte (CTL) activity
against NBT1 target cells after restimulation. Differences of both s.c.
and i.m.f. VVneu+VVGMCSF groups compared with controls were
significant (**Po0.01, *Po0.05). Results are representative of three
independent experiments.
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(Miltenyi Biotec, Auburn, CA) to deplete Ly6G+ cells from the
splenocyte population from NBT1 tumor-bearing mice. We
validated depletion of MDSCs from the negative fraction using
flow cytometry staining for CD11b, Gr-1, Ly6G and Ly6C
(Figure 3a). We then restimulated this MDSC-depleted splenocyte
population with irradiated splenocytes from naive female FVB/N
mice that had been pulsed with the immunodominant major
histocompatibility complex (MHC) class I RNEU420–429 peptide or
HER2/neu protein in Sf21 neu baculovirus-infected lysate, with
NP118–126 peptide and unmodified Sf21 cells used as restimulation
controls. Interferon-γ production by MDSC-depleted splenocytes

was increased in most conditions compared with pre-depletion
controls, with HER2/neu-restimulated effectors significantly
increased compared with all other conditions (Figure 3b).

Vaccination with VVneu+VVGMCSF into the tumor microenviron-
ment, but not VVGMCSF alone, results in a systemic HER2-specific
CTL response, decreased MDSCs and tumor regression

We asked whether vaccination with HER2/neu-antigen-encoding
VVneu and VVGMCSF could overcome MDSC-associated anergy
against HER2/neu induced by the NBT1 model. After 2 weeks of
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(a) Flow cytometry was performed on spleen, tumor-draining lymph node (TDN) and tumor samples stained for Gr-1, CD11b, Ly-6C and Ly-6G.
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monocytic and granulocytic populations for evaluation of Gr-1 and CD11b. This population was then further gated for CD11b+ cells, which
were evaluated for Ly-6G and Ly-6C. Results are representative of three independent experiments. NS, not significant.
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orthotopic NBT1 tumor growth, two doses of VVneu+VGMCSF
+KLH, 2 weeks apart, were administered subcutaneously or by
injection into the tumor microenvironment (i.t., Figure 4a). KLH
was added to all treatment groups and controls, as previous
studies by our group and others had demonstrated its effective-
ness as a vaccine adjuvant.21,31,32 Two weeks after the final
vaccination, splenocytes and VDN were restimulated with
irradiated splenocytes from naive female FVB/N mice that had
been pulsed with immunodominant RNEU420–429 peptide. Sple-
nocytes from mice vaccinated with i.t. VVneu+VVGMCSF+KLH
showed a significantly increased ability to lyse target NBT1 cells
after in vitro restimulation when compared with both equivalent s.
c. vaccination and i.t. VVBGal+VVGMCSF+KLH (Figure 4b). Simi-
larly, cytolytic activity of the VDN population was highest in mice
given i.t. VVneu+VVGMCSF+KLH (Figure 4c). Increased CTL activity
was specific to the RNEU420–429 MHC class I epitope, as
restimulation with control NP118–126 did not result in increased
cytolytic activity (not shown). The percentage of restimulated
CD8+ lymphocytes that were RNEU tetramer-positive from both
spleen and VDN was significantly higher in mice that were
treated with i.t. VVneu+VVGMCSF+KLH than in all other groups
(Figure 4d).

MDSC levels were evaluated using flow cytometry. In mice
treated with i.t. VVneu+VVGMCSF+KLH, MDSC levels in spleen on
day 28 were significantly decreased compared with i.t. vehicle
(Figure 5). Systemic MDSC levels were not significantly decreased
in mice treated with s.c. VVneu+VVGMCSF+KLH. Notably, tumor-
bearing mice treated with i.t. VVBGal+VVGMCSF+KLH exhibited a
significant increase in intratumoral, although not systemic, MDSC
levels (Figure 5). A potential explanation may be that, in addition
to its enhancing effects on antigen presentation, GM-CSF is one of
multiple cytokines that support development of MDSCs.30

Primary tumors in mice vaccinated with i.t. VVneu+VVGMCSF
+KLH regressed from peak size and were significantly smaller than
all other treatment conditions on day 42, including equivalent s.c.
VVneu and i.t. VVGMCSF without antigen (Figures 6a–c). S.c. VVneu
+VVGMCSF+KLH vaccination or i.t. VVBGal+VVGMCSF+KLH did not
inhibit NBT1 growth.

DISCUSSION
The studies presented here demonstrate, using an aggressive
orthotopic model of HER2/neu-driven mammary tumor (NBT1),
that growth of the tumor results in a significant infiltration of
intratumor and systemic MDSC, resulting in the lack of
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Figure 3. Myeloid-derived suppressor cells (MDSCs) suppress a HER2/neu-specific Th1 response in NBT1 tumor-bearing mice. MDSCs from
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development of systemic immunity and anergy to peripheral s.c.
immunization using a neu-encoding vaccinia vaccine that is
effective in naive (non-tumor bearing) mice. Treatment of tumor-
bearing mice using i.t. oncolytic VVGMCSF fails to induce systemic
immunity nor does it lead to tumor regression. In fact,
intratumoral VVGMCSF and resulting GM-CSF expression in tumor
leads to a significant expansion of tumor resident MDSC, as
suggested by the Vonderheide group.33 However, when tumor
antigen-encoding VVneu is combined with VVGMCSF, thus
providing a virally expressed tumor antigen to the tumor
microenvironment, the combination results in the generation of
systemic neu-specific immunity, a significant reduction in tumor
and systemic MDSC and a significant antitumor response. We
confirmed the contribution of MDSCs to immune escape in our
model using flow cytometry to identify a population of CD11b+

Ly-6CintLy-6G+ cells. We also demonstrated that these cells have

suppressive effects by finding, despite an overall increased
background of IFN-γ in MDSC-depleted cultures, increased HER2/
neu-specific IFN-γ production of the systemic splenocyte popula-
tion after depletion of Ly-6G+ cells.
The goal of tumor immunotherapy is the development of

modalities given alone or in combination that result in the
generation of an effective systemic tumor-specific immune
response by the host that can overcome immune escape
mechanisms. Original studies from our laboratory using a murine
bladder cancer model demonstrated the unexpected expansion of
antigen-specific (tetramer positive) CD8+ T cells in the tumor
microenvironment, but not systemically.21 This led us to immunize
intratumorally using a vaccinia-encoding vaccine with resultant
induction of systemic T-cell immunity.21 Coincidently, studies from
the Schlom group using a colon cancer model demonstrated the
induction of significant antitumor immunity, when priming or

-10

0

10

20

30

40

50

60

160:1 80:1 40:1 20:1 10:1

%
 S

p
ec

if
ic

 L
ys

is

E:T

i.t. Vehicle

i.t. VVBGal +VVGMCSF +KLH

s.c. VVneu +VVGMCSF +KLH

i.t. VVneu +VVGMCSF +KLH

**

**

**

**
**

R
N

E
U

 t
et

ra
m

er
 

CD8

i.t. Vehicle
i.t. VVBGal

+VVGMCSF +KLH
i.t. VVneu

+VVGMCSF +KLH
s.c. VVneu

+VVGMCSF +KLH

VDN

Spleen

0

5

10

15

20

25

30

160:1 80:1 40:1 20:1 10:1

i.t. Vehicle

i.t. VVBGal +VVGMCSF +KLH

s.c. VVneu +VVGMCSF +KLH

i.t. VVneu +VVGMCSF +KLH

E:T

*

*

*

0 14 28 Day42

NBT1

s.c. or
i.t.
VV

(MDSC flow)

0

5

10

15

20

25

30

35

i.t. Vehicle

%
C

D
8+

R
N

E
U

 T
et

ra
m

er
+

Spleen

VDN

**

Spleen VDN

s.c. or
i.t.
VV in vitro stim,

CTL assays

%
 S

p
ec

if
ic

 L
ys

is

i.t. VVBGal +
VVGMCSF +

KLH

s.c. VVneu +
VVGMCSF +

KLH

i.t. VVneu +
VVGMCSF +

KLH

Figure 4. Vaccination with VVneu into the tumor microenvironment generates a systemic antitumor cytotoxic T lymphocyte (CTL) response.
(a) Female FVB/N mice were injected with 2 × 106 NBT1 tumor cells into the right second mammary fat pad. Mice were treated twice (days 14
and 28) with VVneu+VVGMCSF+KLH (subcutaneous (s.c.) or intratumoral (i.t.)), VVBGal+VVGMCSF+KLH (i.t.) or vehicle control (i.t.). On day 42,
spleens and vaccination site-draining lymph nodes (VDN) were restimulated with irradiated naive splenocytes that had been pulsed with
RNEU420–429 peptide. (b) Ability of splenocyte effectors to lyse target NBT1 cells was measured by the 51Cr release assay. Difference between i.t.
VVneu+VVGMCSF+KLH and all other conditions was significant (**Po0.01). (c) Tumor-specific CTL activity of VDN effector cells was measured
by 51Cr lysis. Differences between i.t. VVneu+VVGMCSF+KLH and all other groups were statistically significant (**Po0.01, *Po0.05).
(d) Restimulated effectors were evaluated for RNEU tetramer-positive CD8+ cells using flow cytometry. The percent of CD8+ cells that are
RNEU tetramer positive was measured, with representative dot plots and cumulative results of three independent experiments presented
(**Po0.01). KLH, keyhole limpet hemocyanin.

Vaccinia expressing HER2 overcomes MDSC anergy
CR de Vries et al

159

© 2015 Nature America, Inc. Cancer Gene Therapy (2015), 154 – 162



boosting immunizations were given intratumorally.34 These initial
responses to intratumoral poxvirus-based vaccines have been
translated to phase I trials in prostate cancer35 and by us in
pancreatic cancer36 using antigen-encoding non-replicating fowl-
pox vectors.
The strategy of delivering an oncolytic virus to a tumor has

long been studied with the overall hypothesis being that

virus-mediated oncolysis could have primary antitumor effective-
ness and as a sequellae of tumor lysis, antigen released into the
tumor microenvironment could lead to a consolidating systemic
antitumor response active against metastases. As recently
reviewed by Lichty et al,37 preclinical and clinical studies are
ongoing that use a variety of oncolytic vectors and encoded
immune regulatory molecules. Our initial studies focused on the
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potential of generating systemic immunity using the oncolytic
VVGMCSF, which would have the potential of lysing tumors,
eliciting antigens and enhancing antigen presentation via the GM-
CSF. This agent studied by others as JX-594 was subsequently
characterized as to its bioavailability, and antitumor and immune
responses.19,20,38 Of particular note in these studies, JX-594 was
shown to preferentially persist and replicate in the tumor
microenvironment following intravenous administration in pre-
clinical models and in patients.19,20 Given that accessibility of
tumor for local administration is a limitation to the use of these
approaches, this finding suggests that the uniqueness of the
vaccinia platform may allow systemic delivery of virus, immune-
modulating encoded cytokines, as well as antigen as we present
here. Clinical studies using another DNA viral vector HSV-1-GMCSF
construct (OncoVEXGM-CSF) have also demonstrated local infec-
tivity, antitumor activity and local and systemic immune
responses39,40 further supporting the potential of this approach.
Ongoing preclinical and clinical studies combining the oncolytic
virus with other modalities such as chemotherapy and immune
checkpoint inhibitors are also under development and ongoing by
a number of investigators.41,42

In conclusion, the studies presented here provide support for
delivering to the tumor microenvironment a combination of virally
encoded tumor antigen and immunomodulating GM-CSF, both
encoded by the oncolytic vaccinia vector. Our studies demon-
strate the requirement for antigen delivered to the micro-
environment in overcoming MDSC-based immune escape and
subsequent development of a systemic antitumor immune
response in our model. Our and others’ studies have proven
the feasibility of using DNA viral vectors to deliver multiple
gene constructs to the tumor microenvironment via direct
injection18–20,38–40 and in some cases following intravenous
administration.19,20 These combined studies support the conclu-
sion that this approach has the potential of impacting tumor
alone, and supports future approaches combining this with added
immune targeted and antitumor approaches.
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