Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies

Subjects

Abstract

Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME . Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Restifo NP, Dudley ME, Rosenberg SA . Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12: 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Humphries C . Adoptive cell therapy: honing that killer instinct. Nature 2013; 504: S13–S15.

    Article  CAS  PubMed  Google Scholar 

  4. Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH . Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 2014; 32: 189–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yee C . The use of endogenous T cells for adoptive transfer. Immunol Rev 2014; 257: 250–263.

    Article  CAS  PubMed  Google Scholar 

  6. Davila ML, Brentjens R, Wang X, Riviere I, Sadelain M . How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 2012; 1: 1577–1583.

    Article  PubMed  PubMed Central  Google Scholar 

  7. FDA. ‘Guidance for industry: current good manufacturing practice for blood and blood components: (1). Quarantine and disposition of units from prior collections from donors with repeatedly reactive screening test for antibody to hepatitis C virus (anti-HCV); (2). Supplemental testing, and the notification of consignees and blood recipients of donor test results for anti-HCV;’ availability—FDA. Notice. Fed Regist 1998; 63: 56198–56199.

    Google Scholar 

  8. Gee AP . Product release assays. Cytotherapy 1999; 1: 485–491.

    Article  CAS  PubMed  Google Scholar 

  9. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26: 5233–5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riddell SR, Greenberg PD . The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 1990; 128: 189–201.

    Article  CAS  PubMed  Google Scholar 

  12. Topalian SL, Muul LM, Solomon D, Rosenberg SA . Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods 1987; 102: 127–141.

    Article  CAS  PubMed  Google Scholar 

  13. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA . Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 2003; 26: 332–342.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rosenberg SA . Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 2012; 4: 127ps8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR et al. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 2008; 31: 742–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC et al. CD8+ enriched ‘young’ tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010; 16: 6122–6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Labarriere N, Fortun A, Bellec A, Khammari A, Dreno B, Saiagh S et al. A full GMP process to select and amplify epitope-specific T lymphocytes for adoptive immunotherapy of metastatic melanoma. Clin Dev Immunol 2013; 2013: 932318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinrichs CS, Rosenberg SA . Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 2014; 257: 56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 2008; 358: 2698–2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6: 224ra25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2014. (e-pub ahead of print).

  25. Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W et al. Trial watch:adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3: e28344.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Johnson LA, Heemskerk B, Powell DJ Jr ., Cohen CJ, Morgan RA, Dudley ME et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 2006; 177: 6548–6559.

    Article  CAS  PubMed  Google Scholar 

  27. Parkhurst MR, Joo J, Riley JP, Yu Z, Li Y, Robbins PF et al. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin Cancer Res 2009; 15: 169–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA et al. Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J Immunol 2005; 175: 5799–5808.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Moysey R, Molloy PE, Vuidepot AL, Mahon T, Baston E et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 2005; 23: 349–354.

    Article  CAS  PubMed  Google Scholar 

  30. Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008; 14: 1390–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baum C, Schambach A, Bohne J, Galla M . Retrovirus vectors: toward the plentivirus? Mol Ther 2006; 13: 1050–1063.

    Article  CAS  PubMed  Google Scholar 

  32. Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z et al. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 2008; 180: 6116–6131.

    Article  CAS  PubMed  Google Scholar 

  33. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA . Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66: 8878–8886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA . Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007; 67: 3898–3903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voss RH, Willemsen RA, Kuball J, Grabowski M, Engel R, Intan RS et al. Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J Immunol 2008; 180: 391–401.

    Article  CAS  PubMed  Google Scholar 

  36. Suerth JD, Schambach A, Baum C . Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 2012; 24: 598–608.

    Article  CAS  PubMed  Google Scholar 

  37. Sadelain M, Brentjens R, Riviere I . The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009; 32: 169–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A et al. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 2014; 20: 141–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Naranjo A, Brown CE, Bautista C, Wong CW, Chang WC et al. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J Immunother 2012; 35: 689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koehne G, Smith KM, Ferguson TL, Williams RY, Heller G, Pamer EG et al. Quantitation, selection, and functional characterization of Epstein-Barr virus-specific and alloreactive T cells detected by intracellular interferon-gamma production and growth of cytotoxic precursors. Blood 2002; 99: 1730–1740.

    Article  CAS  PubMed  Google Scholar 

  44. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14: 1264–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 2012; 119: 2644–2656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 2010; 115: 925–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995; 345: 9–13.

    Article  CAS  PubMed  Google Scholar 

  48. Smith CA, Ng CY, Heslop HE, Holladay MS, Richardson S, Turner EV et al. Production of genetically modified Epstein-Barr virus-specific cytotoxic T cells for adoptive transfer to patients at high risk of EBV-associated lymphoproliferative disease. J Hematother 1995; 4: 73–79.

    Article  CAS  PubMed  Google Scholar 

  49. Papadopoulou A, Gerdemann U, Katari UL, Tzannou I, Liu H, Martinez C et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med 2014; 6: 242ra83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossig C, Bollard CM, Nuchtern JG, Rooney CM, Brenner MK . Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 2002; 99: 2009–2016.

    Article  CAS  PubMed  Google Scholar 

  51. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH . Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004; 199: 885–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A, Foster AE et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007; 110: 2620–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Loenen MM, de Boer R, van Liempt E, Meij P, Jedema I, Falkenburg JH et al. A Good Manufacturing Practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells. Haematologica 2014; 99: 759–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011; 118: 6050–6056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC . Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011; 117: 1888–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang X, Chang WC, Wong CW, Colcher D, Sherman M, Ostberg JR et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 2011; 118: 1255–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Neudorfer J, Schmidt B, Huster KM, Anderl F, Schiemann M, Holzapfel G et al. Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods 2007; 320: 119–131.

    Article  CAS  PubMed  Google Scholar 

  58. Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR . Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood. 2012; 119: 72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570–578.

    Article  CAS  PubMed  Google Scholar 

  60. Deichmann A, Schmidt M . Biosafety considerations using gamma-retroviral vectors in gene therapy. Curr Gene Therapy 2013; 13: 469–477.

    Article  CAS  Google Scholar 

  61. Miller AD, Buttimore C . Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986; 6: 2895–2902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV . Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65: 2220–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghani K, Cottin S, Kamen A, Caruso M . Generation of a high-titer packaging cell line for the production of retroviral vectors in suspension and serum-free media. Gene Ther 2007; 14: 1705–1711.

    Article  CAS  PubMed  Google Scholar 

  64. Przybylowski M, Hakakha A, Stefanski J, Hodges J, Sadelain M, Riviere I . Production scale-up and validation of packaging cell clearance of clinical-grade retroviral vector stocks produced in cell factories. Gene Ther 2006; 13: 95–100.

    Article  CAS  PubMed  Google Scholar 

  65. Gallardo HF, Tan C, Ory D, Sadelain M . Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 1997; 90: 952–957.

    CAS  PubMed  Google Scholar 

  66. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121: 1822–1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reeves L, Cornetta K . Clinical retroviral vector production: step filtration using clinically approved filters improves titers. Gene Ther 2000; 7: 1993–1998.

    Article  CAS  PubMed  Google Scholar 

  68. Feldman SA, Goff SL, Xu H, Black MA, Kochenderfer JN, Johnson LA et al. Rapid production of clinical-grade gammaretroviral vectors in expanded surface roller bottles using a ‘modified’ step-filtration process for clearance of packaging cells. Hum Gene Ther 2011; 22: 107–115.

    Article  CAS  PubMed  Google Scholar 

  69. Merten OW, Cruz PE, Rochette C, Geny-Fiamma C, Bouquet C, Goncalves D et al. Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol Prog 2001; 17: 326–335.

    Article  CAS  PubMed  Google Scholar 

  70. van der Loo JC, Swaney WP, Grassman E, Terwilliger A, Higashimoto T, Schambach A et al. Scale-up and manufacturing of clinical-grade self-inactivating gamma-retroviral vectors by transient transfection. Gene Ther 2012; 19: 246–254.

    Article  CAS  PubMed  Google Scholar 

  71. Rodrigues AF, Carmo M, Alves PM, Coroadinha AS . Retroviral vector production under serum deprivation: The role of lipids. Biotechnol Bioeng 2009; 104: 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  72. Ghani K, Wang X, de Campos-Lima PO, Olszewska M, Kamen A, Riviere I et al. Efficient human hematopoietic cell transduction using RD114- and GALV-pseudotyped retroviral vectors produced in suspension and serum-free media. Hum Gene Ther 2009; 20: 966–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonini C, Grez M, Traversari C, Ciceri F, Marktel S, Ferrari G et al. Safety of retroviral gene marking with a truncated NGF receptor. Nat Med 2003; 9: 367–369.

    Article  CAS  PubMed  Google Scholar 

  74. Brenner MK, Heslop HE . Is retroviral gene marking too dangerous to use? Cytotherapy 2003; 5: 190–193.

    Article  CAS  PubMed  Google Scholar 

  75. Macpherson JL, Boyd MP, Arndt AJ, Todd AV, Fanning GC, Ely JA et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J Gene Med 2005; 7: 552–564.

    Article  CAS  PubMed  Google Scholar 

  76. Muul LM, Tuschong LM, Soenen SL, Jagadeesh GJ, Ramsey WJ, Long Z et al. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 2003; 101: 2563–2569.

    Article  CAS  PubMed  Google Scholar 

  77. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  PubMed  Google Scholar 

  78. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010; 467: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boulad F, Wang X, Qu J, Taylor C, Ferro L, Karponi G et al. Safe mobilization of CD34+ cells in adults with beta-thalassemia and validation of effective globin gene transfer for clinical investigation. Blood 2014; 123: 1483–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341: 1233151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341: 1233158.

    Article  CAS  PubMed  Google Scholar 

  82. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  84. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M . Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci USA 1996; 93: 15266–15271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cavalieri S, Cazzaniga S, Geuna M, Magnani Z, Bordignon C, Naldini L et al. Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood 2003; 102: 497–505.

    Article  CAS  PubMed  Google Scholar 

  86. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther 2009; 17: 844–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ni Y, Sun S, Oparaocha I, Humeau L, Davis B, Cohen R et al. Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J Gene Med 2005; 7: 818–834.

    Article  CAS  PubMed  Google Scholar 

  88. Broussau S, Jabbour N, Lachapelle G, Durocher Y, Tom R, Transfiguracion J et al. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 2008; 16: 500–507.

    Article  CAS  PubMed  Google Scholar 

  89. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pham PL, Kamen A, Durocher Y . Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 2006; 34: 225–237.

    Article  CAS  PubMed  Google Scholar 

  91. Toledo JR, Prieto Y, Oramas N, Sanchez O . Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Appl Biochem Biotechnol 2009; 157: 538–544.

    Article  CAS  PubMed  Google Scholar 

  92. Ansorge S, Lanthier S, Transfiguracion J, Durocher Y, Henry O, Kamen A . Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med 2009; 11: 868–876.

    Article  CAS  PubMed  Google Scholar 

  93. Witting SR, Li LH, Jasti A, Allen C, Cornetta K, Brady J et al. Efficient large volume lentiviral vector production using flow electroporation. Hum Gene Therapy 2012; 23: 243–249.

    Article  CAS  Google Scholar 

  94. Kutner RH, Puthli S, Marino MP, Reiser J . Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol 2009; 9: 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ausubel LJ, Hall C, Sharma A, Shakeley R, Lopez P, Quezada V et al. Production of CGMP-Grade Lentiviral Vectors. Bioprocess Int 2012; 10: 32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Segura MM, Mangion M, Gaillet B, Garnier A . New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13: 987–1011.

    Article  CAS  PubMed  Google Scholar 

  97. Segura MM, Garnier A, Durocher Y, Ansorge S, Kamen A . New protocol for lentiviral vector mass production. Methods Mol Biol 2010; 614: 39–52.

    Article  CAS  PubMed  Google Scholar 

  98. Schweizer M, Merten OW . Large-scale production means for the manufacturing of lentiviral vectors. Curr Gene Therapy 2010; 10: 474–486.

    Article  CAS  Google Scholar 

  99. Kebriaei P, Huls H, Jena B, Munsell M, Jackson R, Lee DA et al. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 2012; 23: 444–450.

    Article  CAS  PubMed  Google Scholar 

  100. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, Shpall EJ et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp 2013: e50070.

  101. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PloS One 2013; 8: e64138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. FDA. Process Validation: General Principle and Practices. 2011.

  103. FDA. Guidance for Industry: CGMP for Phase 1 Investigational Drugs. 2008.

  104. Khuu HM, Patel N, Carter CS, Murray PR, Read EJ . Sterility testing of cell therapy products: parallel comparison of automated methods with a CFR-compliant method. Transfusion 2006; 46: 2071–2082.

    Article  PubMed  Google Scholar 

  105. Hocquet D, Sauget M, Roussel S, Malugani C, Pouthier F, Morel P et al. Validation of an automated blood culture system for sterility testing of cell therapy products. Cytotherapy 2014; 16: 692–698.

    Article  PubMed  Google Scholar 

  106. Gee AP, Sumstad D, Stanson J, Watson P, Proctor J, Kadidlo D et al. A multicenter comparison study between the Endosafe PTS rapid-release testing system and traditional methods for detecting endotoxin in cell-therapy products. Cytotherapy 2008; 10: 427–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bouchie A, Allison M, Webb S, DeFrancesco L . Nature Biotechnology's academic spinouts of 2013. Nat Biotech 2014; 32: 229–238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Michel Sadelain for critically reviewing the manuscript. This work is supported by NCI P30 CA08748, P50 CA086438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Rivière.

Ethics declarations

Competing interests

IR is a scientific cofounder of and a consultant for Juno Therapeutics. XW declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Rivière, I. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 22, 85–94 (2015). https://doi.org/10.1038/cgt.2014.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.81

This article is cited by

Search

Quick links