Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing of FOXM1 transcription factor expression by adenovirus-mediated RNA interference inhibits human hepatocellular carcinoma growth

Abstract

The Forkhead Box M1 (FOXM1) transcription factor has been considered as a potential target for the prevention and/or therapeutic intervention in human carcinomas because of its roles in tumorigenesis and tumor progression through regulating the expression of genes relevant to cell proliferation and transformation. In this study, FOXM1 was found to express strongly in both clinical tissue specimens and human hepatocellular carcinoma (HCC) cell lines such as Huh-6, Huh-7 and HepG2. The knockdown of FOXM1 expression through an adenovirus vector (named AdFOXM1shRNA), which expresses a short hairpin RNA to downregulate FOXM1 expression specifically, diminished the proliferation of Huh-7 and HepG2 cells and anchorage-independent growth of Huh-7 cells. Furthermore, we assessed the efficacy of AdFOXM1shRNA for tumor gene therapy with the Huh-7 cell xenograft mouse model and found that the tumor growth was significantly suppressed when inoculated mice were injected with AdFOXM1shRNA in the tumors. Together, our results suggest that FOXM1 is a potential therapeutic target for HCC and AdFOXM1shRNA may be an additional gene therapeutic intervention for HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Forner A, Llovet JM, Bruix J . Hepatocellular carcinoma. Lancet 2012; 379: 1245–1255.

    Article  PubMed  Google Scholar 

  2. El-Serag HB . Hepatocellular carcinoma. N Engl J Med 2011; 365: 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  3. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008; 100: 698–711.

    Article  PubMed  Google Scholar 

  4. Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP . Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer 2007; 43: 979–992.

    Article  CAS  PubMed  Google Scholar 

  5. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM . Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007; 27: 55–76.

    Article  CAS  PubMed  Google Scholar 

  6. Kaestner KH, Knochel W, Martinez DE . Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14: 142–146.

    CAS  PubMed  Google Scholar 

  7. Costa RH, Kalinichenko VV, Holterman AX, Wang X . Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003; 38: 1331–1347.

    Article  CAS  PubMed  Google Scholar 

  8. Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG et al. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 1997; 17: 1626–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ye H, Holterman AX, Yoo KW, Franks RR, Costa RH . Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase. Mol Cell Biol 1999; 19: 8570–8580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Quail E, Hung NJ, Tan Y, Ye H, Costa RH . Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc Natl Acad Sci USA 2001; 98: 11468–11473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Kiyokawa H, Dennewitz MB, Costa RH . The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA 2002; 99: 16881–16886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 2004; 18: 830–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang IC, Dennewitz MB et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 2004; 276: 74–88.

    Article  CAS  PubMed  Google Scholar 

  14. Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 2005; 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  15. Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 2005; 25: 10875–10894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wonsey DR, Follettie MT . Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 2005; 65: 5181–5189.

    Article  CAS  PubMed  Google Scholar 

  17. Tan Y, Raychaudhuri P, Costa RH . Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 2007; 27: 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  18. Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP et al. FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 2008; 283: 16545–16553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan Y, Chen Y, Yu L, Zhu H, Meng X, Huang X et al. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription. Cell Prolif 2010; 43: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie Z, Tan G, Ding M, Dong D, Chen T, Meng X et al. Foxm1 transcription factor is required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic Acids Res 2010; 38: 8027–8038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 2006; 66: 2153–2161.

    Article  CAS  PubMed  Google Scholar 

  22. Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 2006; 66: 3593–3602.

    Article  CAS  PubMed  Google Scholar 

  23. Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 2006; 66: 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG . FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer research 2002; 62: 4773–4780.

    CAS  PubMed  Google Scholar 

  25. Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X et al. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett 2013; 340: 104–112.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S et al. FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat 2010; 122: 337–346.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH . Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 2007; 67: 8293–8300.

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D et al. Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res 2009; 69: 3501–3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS ONE 2009; 4: e4849.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adami GR, Ye H . Future roles for FoxM1 inhibitors in cancer treatments. Future Oncol 2007; 3: 1–3.

    Article  PubMed  Google Scholar 

  31. Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH . Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev 2010; 36: 151–156.

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Yang C, Yu L, Xie L, Hu J, Zeng L et al. Adenovirus-mediated RNA interference targeting FOXM1 transcription factor suppresses cell proliferation and tumor growth of nasopharyngeal carcinoma. J Gene Med 2012; 14: 231–240.

    Article  CAS  PubMed  Google Scholar 

  33. Yang C, Chen H, Yu L, Shan L, Xie L, Hu J et al. Inhibition of FOXM1 transcription factor suppresses cell proliferation and tumor growth of breast cancer. Cancer Gene Ther 2013; 20: 117–124.

    Article  CAS  PubMed  Google Scholar 

  34. Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H et al. Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol 2012; 57: 600–612.

    Article  CAS  PubMed  Google Scholar 

  35. Sun HC, Li M, Lu JL, Yan DW, Zhou CZ, Fan JW et al. Overexpression of Forkhead box M1 protein associates with aggressive tumor features and poor prognosis of hepatocellular carcinoma. Oncol Rep 2011; 25: 1533–1539.

    PubMed  Google Scholar 

  36. Wu QF, Liu C, Tai MH, Liu D, Lei L, Wang RT et al. Knockdown of FoxM1 by siRNA interference decreases cell proliferation, induces cell cycle arrest and inhibits cell invasion in MHCC-97H cells in vitro. Acta Pharmacol Sin 2010; 31: 361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan Y, Costa RH, Kovesdi I, Reichel RR . Adenovirus-mediated increase of HNF-3 levels stimulates expression of transthyretin and sonic hedgehog, which is associated with F9 cell differentiation toward the visceral endoderm lineage. Gene Expr 2001; 9: 237–248.

    Article  CAS  PubMed  Google Scholar 

  38. Tan Y, Xie Z, Ding M, Wang Z, Yu Q, Meng L et al. Increased levels of FoxA1 transcription factor in pluripotent P19 embryonal carcinoma cells stimulate neural differentiation. Stem Cell Dev 2010; 19: 1365–1374.

    Article  CAS  Google Scholar 

  39. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ . Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 1986; 46: 4109–4115.

    CAS  PubMed  Google Scholar 

  40. Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 2004; 6: 744–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raychaudhuri P, Park HJ . FoxM1: a master regulator of tumor metastasis. Cancer Res 2011; 71: 4329–4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berger E, Vega N, Vidal H, Geloen A . Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival. Biotechnol J 2012; 7: 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  43. Bruix J, Raoul JL, Sherman M, Mazzaferro V, Bolondi L, Craxi A et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol 2012; 57: 821–829.

    Article  CAS  PubMed  Google Scholar 

  44. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390.

    Article  CAS  PubMed  Google Scholar 

  45. Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, Yao KM . Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 2005; 118: 795–806.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma A, Li X, Bangari DS, Mittal SK . Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143: 184–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Douglas JT . Adenoviral vectors for gene therapy. Mol Biotechnol 2007; 36: 71–80.

    Article  CAS  PubMed  Google Scholar 

  48. Majhen D, Ambriovic-Ristov A . Adenoviral vectors—how to use them in cancer gene therapy? Virus Res 2006; 119: 121–133.

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H et al. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 2005; 128: 2029–2041.

    Article  CAS  PubMed  Google Scholar 

  50. Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther 2005; 12: 95–100.

    Article  CAS  PubMed  Google Scholar 

  51. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T . ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 2005; 65: 10680–10685.

    Article  CAS  PubMed  Google Scholar 

  52. Dai Y, Qiao L, Chan KW, Yang M, Ye J, Zhang R et al. Adenovirus-mediated down-regulation of X-linked inhibitor of apoptosis protein inhibits colon cancer. Mol Cancer Ther 2009; 8: 2762–2770.

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Zhao G, Liu X, Sui A, Yang K, Yao R et al. Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo. J Exp Clin Cancer Res 2010; 29: 123.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang TB, Huang WS, Lin WH, Shi HP, Dong WG . Inhibition of KIT RNAi mediated with adenovirus in gastrointestinal stromal tumor xenograft. World J Gastroenterol 2010; 16: 5122–5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China [grant number 2010DFB30300]; and Natural Science Foundation of China [grant number 81171949, 31161160558 to Y.T.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Yu or Y Tan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Xiong, J., Yang, C. et al. Silencing of FOXM1 transcription factor expression by adenovirus-mediated RNA interference inhibits human hepatocellular carcinoma growth. Cancer Gene Ther 21, 133–138 (2014). https://doi.org/10.1038/cgt.2014.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.8

Keywords

This article is cited by

Search

Quick links