Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma

Abstract

The median survival of glioblastoma multiforme (GBM) is approximately 1 year. Following surgical removal, systemic therapies are limited by the blood–brain barrier. To circumvent this, we developed a method to modify neurons with the genetic sequence for therapeutic monoclonal antibodies using adeno-associated virus (AAV) gene transfer vectors, directing persistent, local expression in the tumor milieu. The human U87MG GBM cell line or patient-derived early passage GBM cells were administered to the striatum of NOD/SCID immunodeficient mice. AAVrh.10BevMab, an AAVrh.10-based vector coding for bevacizumab (Avastin), an anti-human vascular endothelial growth factor (VEGF) monoclonal antibody, was delivered to the area of the GBM xenograft. Localized expression of bevacizumab was demonstrated by quantitative PCR, ELISA and western blotting. Immunohistochemistry showed that bevacizumab was expressed in neurons. Concurrent administration of AAVrh.10BevMab with the U87MG tumor reduced tumor blood vessel density and tumor volume, and increased survival. Administration of AAVrh.10BevMab 1 week after U87MG xenograft reduced growth and increased survival. Studies with patient-derived early passage GBM primary cells showed a reduction in primary tumor burden with an increased survival. These data support the strategy of AAV-mediated central nervous system gene therapy to treat GBM, overcoming the blood–brain barrier through local, persistent delivery of an anti-angiogenesis monoclonal antibody.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.

    Article  Google Scholar 

  2. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ . Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010; 60: 166–193.

    Article  Google Scholar 

  3. Dolecek TA, Propp JM, Stroup NE, Kruchko C . CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol 2012; 14 Suppl 5: v1–49.

    Article  Google Scholar 

  4. Barker FG, Chang SM, Gutin PH, Malec MK, McDermott MW, Prados MD et al. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 1998; 42: 709–720.

    Article  Google Scholar 

  5. Allahdini F, Amirjamshidi A, Reza-Zarei M, Abdollahi M . Evaluating the prognostic factors effective on the outcome of patients with glioblastoma multiformis: does maximal resection of the tumor lengthen the median survival? World Neurosurg 2010; 73: 128–134.

    Article  Google Scholar 

  6. Park JK, Hodges T, Arko L, Shen M, Dello ID, McNabb A et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 2010; 28: 3838–3843.

    Article  Google Scholar 

  7. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468: 829–833.

    Article  CAS  Google Scholar 

  8. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z et al. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 2008; 7: 2553–2561.

    Article  CAS  Google Scholar 

  9. Thompson EM, Frenkel EP, Neuwelt EA . The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology 2011; 76: 87–93.

    Article  CAS  Google Scholar 

  10. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg 2011; 114: 624–632.

    Article  CAS  Google Scholar 

  11. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 2009; 18: 1061–1083.

    Article  CAS  Google Scholar 

  12. Jain RK, di TE, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT . Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8: 610–622.

    Article  CAS  Google Scholar 

  13. Sweet JA, Feinberg ML, Sherman JH . The role of avastin in the management of recurrent glioblastoma. Neurosurg Clin N Am 2012; 23: 331–341, x.

    Article  Google Scholar 

  14. Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 2011; 29: 142–148.

    Article  CAS  Google Scholar 

  15. Zhang G, Huang S, Wang Z . A meta-analysis of bevacizumab alone and in combination with irinotecan in the treatment of patients with recurrent glioblastoma multiforme. J Clin Neurosci 2012; 19: 1636–1640.

    Article  CAS  Google Scholar 

  16. Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 2007; 15: 481–491.

    Article  CAS  Google Scholar 

  17. Sondhi D, Johnson L, Purpura K, Monette S, Souweidane MM, Kaplitt MG et al. Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Methods 2012; 23: 324–335.

    Article  CAS  Google Scholar 

  18. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008; 19: 463–474.

    Article  CAS  Google Scholar 

  19. Souweidane MM, Fraser JF, Arkin LM, Sondhi D, Hackett NR, Kaminsky SM et al. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr 2010; 6: 115–122.

    Article  Google Scholar 

  20. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005; 23: 584–590.

    Article  CAS  Google Scholar 

  21. Watanabe M, Boyer JL, Crystal RG . AAVrh.10-mediated genetic delivery of bevacizumab to the pleura to provide local anti-VEGF to suppress growth of metastatic lung tumors. Gene Ther 2010; 17: 1042–1051.

    Article  CAS  Google Scholar 

  22. Mao Y, Kiss S, Boyer JL, Hackett NR, Qiu J, Carbone A et al. Persistent suppression of ocular neovascularization with intravitreal administration of AAVrh.10 coding for bevacizumab. Hum Gene Ther 2011; 22: 1525–1535.

    Article  CAS  Google Scholar 

  23. Watanabe M, Boyer JL, Hackett NR, Qiu J . Crystal RG. Genetic delivery of the murine equivalent of bevacizumab (avastin), an anti-vascular endothelial growth factor monoclonal antibody, to suppress growth of human tumors in immunodeficient mice. Hum Gene Ther 2008; 19: 300–310.

    Article  CAS  Google Scholar 

  24. Rosenberg JB, Hicks MJ, De BP, Pagovich O, Frenk E, Janda KD et al. AAVrh.10-mediated expression of an anti-cocaine antibody mediates persistent passive immunization that suppresses cocaine-induced behavior. Hum Gene Ther 2012; 23: 451–459.

    Article  CAS  Google Scholar 

  25. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012; 22: 21–35.

    Article  CAS  Google Scholar 

  26. Hasselbalch B, Lassen U, Poulsen HS . Patients with recurrent high-grade glioma: therapy with combination of bevacizumab and irinotecan. In: Hayat MA (eds). Tumors of the Central Nervous System. New York: Springer Science+Business Media, 2011: 289–299.

    Google Scholar 

  27. Hawkins-Daarud A, Rockne RC, Anderson AR, Swanson KR . Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol 2013; 3: 66.

    Article  Google Scholar 

  28. Nagasawa DT, Chow F, Yew A, Kim W, Cremer N, Yang I . Temozolomide and other potential agents for the treatment of glioblastoma multiforme. Neurosurg Clin N Am 2012; 23: 307–322 ix.

    Article  Google Scholar 

  29. Chaudhry NS, Shah AH, Ferraro N, Snelling BM, Bregy A, Madhavan K et al. Predictors of long-term survival in patients with glioblastoma multiforme: advancements from the last quarter century. Cancer Invest 2013; 31: 287–308.

    Article  Google Scholar 

  30. Arrillaga-Romany I, Reardon DA, Wen PY . Current status of antiangiogenic therapies for glioblastomas. Expert Opin Investig Drugs 2014; 23: 199–210.

    Article  CAS  Google Scholar 

  31. Norden AD, Drappatz J, Wen PY . Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 2009; 5: 610–620.

    Article  CAS  Google Scholar 

  32. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM . Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 2010; 120: 694–705.

    Article  CAS  Google Scholar 

  33. Li JL, Sainson RC, Oon CE, Turley H, Leek R, Sheldon H et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res 2011; 71: 6073–6083.

    Article  CAS  Google Scholar 

  34. Pope WB, Xia Q, Paton VE, Das A, Hambleton J, Kim HJ et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology 2011; 76: 432–437.

    Article  CAS  Google Scholar 

  35. von BL, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res 2011; 17: 6192–6205.

    Article  Google Scholar 

  36. Ebos JM, Pili R . Mind the gap: potential for rebounds during antiangiogenic treatment breaks. Clin Cancer Res 2012; 18: 3719–3721.

    Article  CAS  Google Scholar 

  37. Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 2006; 116: 2610–2621.

    Article  CAS  Google Scholar 

  38. Pitz MW, Desai A, Grossman SA, Blakeley JO . Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol 2011; 104: 629–638.

    Article  CAS  Google Scholar 

  39. Agarwal S, Manchanda P, Vogelbaum MA, Ohlfest JR, Elmquist WF . Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos 2013; 41: 33–39.

    Article  CAS  Google Scholar 

  40. Ferrara N, Hillan KJ, Gerber HP, Novotny W . Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391–400.

    Article  CAS  Google Scholar 

  41. Homsi J, Daud AI . Spectrum of activity and mechanism of action of VEGF/PDGF inhibitors. Cancer Control 2007; 14: 285–294.

    Article  Google Scholar 

  42. Leveque D, Wisniewski S, Jehl F . Pharmacokinetics of therapeutic monoclonal antibodies used in oncology. Anticancer Res 2005; 25: 2327–2343.

    CAS  PubMed  Google Scholar 

  43. Schlachetzki F, Zhu C, Pardridge WM . Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem 2002; 81: 203–206.

    Article  CAS  Google Scholar 

  44. Kourlas H, Abrams P . Ranibizumab for the treatment of neovascular age-related macular degeneration: a review. Clin Ther 2007; 29: 1850–1861.

    Article  CAS  Google Scholar 

  45. Jenab-Wolcott J, Giantonio BJ . Bevacizumab: current indications and future development for management of solid tumors. Expert Opin Biol Ther 2009; 9: 507–517.

    Article  CAS  Google Scholar 

  46. Langer C, Soria JC . The role of anti-epidermal growth factor receptor and anti-vascular endothelial growth factor therapies in the treatment of non-small-cell lung cancer. Clin Lung Cancer 2010; 11: 82–90.

    Article  CAS  Google Scholar 

  47. Galfrascoli E, Piva S, Cinquini M, Rossi A, La VN, Bramati A et al. Risk/benefit profile of bevacizumab in metastatic colon cancer: a systematic review and meta-analysis. Dig Liver Dis 2011; 43: 286–294.

    Article  CAS  Google Scholar 

  48. Peak SJ, Levin VA . Role of bevacizumab therapy in the management of glioblastoma. Cancer Manag Res 2010; 2: 97–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J . Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 2008; 62: 779–786.

    Article  CAS  Google Scholar 

  50. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der HM, Moayedpardazi H et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 2010; 28: 1019–1029.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephanie Phillips for help with these studies; N Mohamed and DN McCarthy for help with the manuscript; and Carolyn Wiener for her continued support. These studies were supported, in part, by the Starr Cancer Consortium and the National Foundation for Cancer Research. MJH was supported, in part, by NIH T32HL094284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R G Crystal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hicks, M., Funato, K., Wang, L. et al. Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Ther 22, 1–8 (2015). https://doi.org/10.1038/cgt.2014.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.58

This article is cited by

Search

Quick links