Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells

Abstract

Mesenchymal stem cells (MSCs) have attracted significant attention in cancer research as a result of their accessibility, tumor-oriented homing capacity, and the feasibility of auto-transplantation. This review provides a comprehensive overview of current challenges in pancreatic cancer therapy, and we propose a novel strategy for using MSCs as means of delivering anticancer genes to the site of pancreas. We aim to provide a practical platform for the development of MSC-based therapy for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    PubMed  Google Scholar 

  2. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. Cancer statistics. 2004 CA Cancer J Clin 2004; 54: 8–29.

    Article  PubMed  Google Scholar 

  3. Iovanna J, Mallmann MC, Goncalves A, Turrini O, Dagorn JC . Current knowledge on pancreatic cancer. Front Oncol 2012; 2: 6.

    PubMed  PubMed Central  Google Scholar 

  4. Canadian Cancer Society's Steering Committee on Cancer Statistics. Canadian Cancer Statistics 2012 Canadian Cancer Society: Toronto, ON, Canada, 2012 ISSN 0835-2976.

  5. Smeenk HG, de Castro SM, Jeekel JJ, Kazemier G, Busch OR, Incrocci L et al. Locally advanced pancreatic cancer treated with radiation and 5-fluorouracil: a first step to neoadjuvant treatment? Dig Surg 2005; 22: 191–197.

    CAS  PubMed  Google Scholar 

  6. Michaud DS . Epidemiology of pancreatic cancer. Minerva Chir 2004; 59: 99–111.

    CAS  PubMed  Google Scholar 

  7. Githens S. Differentiation and development of the pancreas in animals. In: Go VLW (ed), The Pancreas: Biology, Pathobiology and Disease 2nd edn. Raven Press, 1993 pp 21–55.

  8. Bardeesy N, Sharpless NE, DePinho RA, Merlino G . The genetics of pancreatic adenocarcinoma: a roadmap for a mouse model. Sem Cancer Biol 2001; 11: 201–218.

    CAS  Google Scholar 

  9. Elayat AA, el-Naggar MM, Tahir M . An immunocytochemical and morphometric study of the rat pancreatic islets. J Anat 1995; 186 (Pt 3): 629–637.

    PubMed  PubMed Central  Google Scholar 

  10. Li J, Wientjes MG, Au JL . Pancreatic cancer: pathobiology, treatment options, and drug delivery. AAPS J 2010; 12: 223–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Warshaw AL, Gu ZY, Wittenberg J, Waltman AC . Preoperative staging and assessment of resectability of pancreatic cancer. Arch Surg 1990; 125: 230–233.

    CAS  PubMed  Google Scholar 

  12. Conlon KC, Klimstra DS, Brennan MF . Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Ann Surg 1996; 223: 273–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeo CJ, Cameron JL, Lillemoe KD, Sohn TA, Campbell KA, Sauter PK et al. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2: randomized controlled trial evaluating survival, morbidity, and mortality. Ann Surg 2002; 236: 355–366 discussion 366-8.

    PubMed  PubMed Central  Google Scholar 

  14. Christians KK, Tsai S, Tolat PP, Evans DB . Critical steps for pancreaticoduodenectomy in the setting of pancreatic adenocarcinoma. J Surg Oncol 2012; 107: 33–38.

    PubMed  Google Scholar 

  15. Macmillan Cancer SupportChemotherapy for pancreatic cancer.. 2012http://www.macmillan.org.uk/Cancerinformation/Cancertypes/Pancreas/Treatingpancreaticcancer/Treatmentoverview.aspx.

  16. Mahalingam D, Kelly KR, Swords RT, Carew J, Nawrocki ST, Giles FJ . Emerging drugs in the treatment of pancreatic cancer. Expert Opin Emerg Drugs 2009; 14: 311–328.

    CAS  PubMed  Google Scholar 

  17. Barton-Burke M . Gemcitabine: a pharmacologic and clinical overview. Cancer Nurs 1999; 22: 176–183.

    CAS  PubMed  Google Scholar 

  18. Eastman A . The mechanism of action of cisplatin: from adducts to apoptosis. In: Cisplatin. Verlag Helvetica Chimica Acta, Fachbereich Chemie: Dortmund, Germany, 2006 pp 111–134.

    Google Scholar 

  19. Bhattacharyya M, Lemoine NR . Gene therapy developments for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006; 20: 285–298.

    CAS  PubMed  Google Scholar 

  20. Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 2011; 477: 99–102.

    CAS  PubMed  Google Scholar 

  21. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New Engl J Med 2011; 365: 725–733.

    CAS  PubMed  Google Scholar 

  22. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000; 6: 433–440.

    CAS  PubMed  Google Scholar 

  23. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  24. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  25. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53: 549–554.

    CAS  PubMed  Google Scholar 

  26. Smit VTHBM, Boot AJM, Smits AMM, Fleuren GJ, Cornelisse CJ, Bos JL . KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 1988; 16: 7773–7782.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53: 549–554.

    CAS  PubMed  Google Scholar 

  28. Kranenburg O . The KRAS oncogene: past, present, and future. Biochim Biophys Acta 2005; 1756: 81–82.

    CAS  PubMed  Google Scholar 

  29. Hruban RH, Goggins M, Parsons J, Kern SE . Progression model for pancreatic cancer. Clin Cancer Res 2000; 6: 2969–2972.

    CAS  PubMed  Google Scholar 

  30. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miwa W, Yasuda J, Murakami Y, Yashima K, Sugano K, Sekine T et al. Isolation of DNA sequences amplified at chromosome 19q13.1-q13.2 including the AKT2 locus in human pancreatic cancer. Biochem Biophys Res Commun 1996; 225: 968–974.

    CAS  PubMed  Google Scholar 

  32. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    CAS  PubMed  Google Scholar 

  33. Downward J . PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 2004; 15: 177–182.

    CAS  PubMed  Google Scholar 

  34. Liang J, Slingerland JM . Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003; 2: 339–345.

    CAS  PubMed  Google Scholar 

  35. Downward J . Ras signalling and apoptosis. Curr Opin Genet Dev 1998; 8: 49–54.

    CAS  PubMed  Google Scholar 

  36. Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ . Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther 2002; 1: 989–997.

    CAS  PubMed  Google Scholar 

  37. Okami K, Wu L, Riggins G, Cairns P, Goggins M, Evron E et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res 1998; 58: 509–511.

    CAS  PubMed  Google Scholar 

  38. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG . Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 1992; 90: 1352–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebert M, Yokoyama M, Friess H, Kobrin MS, Buchler MW, Korc M . Induction of platelet-derived growth factor A and B chains and over-expression of their receptors in human pancreatic cancer. Int J Cancer 1995; 62: 529–535.

    CAS  PubMed  Google Scholar 

  40. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Kunz J, Beger HG et al. Overexpression of HER2/neu oncogene in human pancreatic carcinoma. Hum Pathol 1993; 24: 1127–1134.

    CAS  PubMed  Google Scholar 

  41. Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M . Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 1995; 55: 2007–2011.

    CAS  PubMed  Google Scholar 

  42. Kornmann M, Ishiwata T, Beger HG, Korc M . Fibroblast growth factor-5 stimulates mitogenic signaling and is overexpressed in human pancreatic cancer: evidence for autocrine and paracrine actions. Oncogene 1997; 15: 1417–1424.

    CAS  PubMed  Google Scholar 

  43. Harding MW . Immunophilins, mTOR, and pharmacodynamic strategies for a targeted cancer therapy. Clin Cancer Res 2003; 9: 2882–2886.

    CAS  PubMed  Google Scholar 

  44. Hay N, Sonenberg N . Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926–1945.

    CAS  PubMed  Google Scholar 

  45. Morgensztern D, McLeod HL . PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005; 16: 797–803.

    CAS  PubMed  Google Scholar 

  46. Clevers H . Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469–480.

    CAS  PubMed  Google Scholar 

  47. Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M . Stabilization of beta-catenin impacts pancreas growth. Development 2006; 133: 2023–2032.

    CAS  PubMed  Google Scholar 

  48. Murtaugh LC, Law AC, Dor Y, Melton DA . Beta-catenin is essential for pancreatic acinar but not islet development. Development 2005; 132: 4663–4674.

    CAS  PubMed  Google Scholar 

  49. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Morris JPt, Wang SC, Hebrok M . KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010; 10: 683–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Malbon CC . Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front Biosci 2004; 9: 1048–1058.

    CAS  PubMed  Google Scholar 

  52. Zeng G, Germinaro M, Micsenyi A, Monga NK, Bell A, Sood A et al. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia 2006; 8: 279–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwartz AL, Malgor R, Dickerson E, Weeraratna AT, Slominski A, Wortsman J et al. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res 2009; 15: 4114–4122.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med 2008; 12: 2823–2835.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687–12690.

    CAS  PubMed  Google Scholar 

  56. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    CAS  PubMed  Google Scholar 

  57. Johnstone RW, Frew AJ, Smyth MJ . The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 2008; 8: 782–798.

    CAS  PubMed  Google Scholar 

  58. Wu GS . TRAIL as a target in anti-cancer therapy. Cancer Lett 2009; 285: 1–5.

    CAS  PubMed  Google Scholar 

  59. Zhang L, Fang B . Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005; 12: 228–237.

    CAS  PubMed  Google Scholar 

  60. Wiley SR SK, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    CAS  PubMed  Google Scholar 

  61. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H . Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999; 189: 1451–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fanger NA, Maliszewski CR, Schooley K, Griffith TS . Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999; 190: 1155–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA . Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999; 189: 1343–1354.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kemp TJ, Moore JM, Griffith TS . Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation. J Immunol 2004; 173: 892–899.

    CAS  PubMed  Google Scholar 

  65. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B . Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 1998; 188: 2375–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Holoch PA, Griffith TS . TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 2009; 625: 63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu DM, Shi J, Liu S, Liu Y, Zheng D . HIV infection enhances TRAIL-induced cell death in macrophage by down-regulating decoy receptor expression and generation of reactive oxygen species. PloS ONE 2011; 6: e18291.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ashkenazi A . Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2: 420–430.

    CAS  PubMed  Google Scholar 

  69. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.

    CAS  PubMed  Google Scholar 

  70. Falschlehner C, Emmerich CH, Gerlach B, Walczak H . TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 2007; 39: 1462–1475.

    CAS  PubMed  Google Scholar 

  71. Liu W, Zhou Y, Reske SN, Shen C . PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res 2008; 28: 3613–3619.

    CAS  PubMed  Google Scholar 

  72. Yuan XJ, Whang YE . PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 2002; 21: 319–327.

    CAS  PubMed  Google Scholar 

  73. Forster MD, Dedes KJ, Sandhu S, Frentzas S, Kristeleit R, Ashworth A et al. Treatment with olaparib in a patient with PTEN-deficient endometrioid endometrial cancer. Nat Rev. Clin Oncol 2011; 8: 302–306.

    CAS  PubMed  Google Scholar 

  74. Carnero A . The PKB/AKT pathway in cancer. Curr Pharm Des 2010; 16: 34–44.

    CAS  PubMed  Google Scholar 

  75. Chalhoub N, Baker SJ . PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009; 4: 127–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakurada A, Suzuki A, Sato M, Yamakawa H, Orikasa K, Uyeno S et al. Infrequent genetic alterations of the PTEN/MMAC1 gene in Japanese patients with primary cancers of the breast, lung, pancreas, kidney, and ovary. Jpn J Cancer Res 1997; 88: 1025–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA . The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 2004; 23: 8571–8580.

    CAS  PubMed  Google Scholar 

  78. Altomare DA, Tanno S, De Rienzo A, Klein-Szanto AJ, Skele KL, Hoffman JP et al. Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 2002; 87: 470–476.

    PubMed  Google Scholar 

  79. Ebert MP, Fei G, Schandl L, Mawrin C, Dietzmann K, Herrera P et al. Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1. Br J Cancer 2002; 86: 257–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106: 3806–3811.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837–3844.

    CAS  PubMed  Google Scholar 

  82. Vasudevan KM, Burikhanov R, Goswami A, Rangnekar VM . Suppression of PTEN expression is essential for antiapoptosis and cellular transformation by oncogenic Ras. Cancer Res 2007; 67: 10343–10350.

    CAS  PubMed  Google Scholar 

  83. Chow JY, Quach KT, Cabrera BL, Cabral JA, Beck SE, Carethers JM . RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells. Carcinogenesis 2007; 28: 2321–2327.

    CAS  PubMed  Google Scholar 

  84. Chow JY, Dong H, Quach KT, Van Nguyen PN, Chen K, Carethers JM . TGF-beta mediates PTEN suppression and cell motility through calcium-dependent PKC-alpha activation in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol 2008; 294: G899–G905.

    CAS  PubMed  Google Scholar 

  85. Ma J, Sawai H, Ochi N, Matsuo Y, Xu D, Yasuda A et al. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem 2009; 331: 161–171.

    CAS  PubMed  Google Scholar 

  86. Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR et al. PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res 2010; 70: 7114–7124.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pappas G, Zumstein LA, Munshi A, Hobbs M, Meyn RE . Adenoviral-mediated PTEN expression radiosensitizes non-small cell lung cancer cells by suppressing DNA repair capacity. Cancer Gene Ther 2007; 14: 543–549.

    CAS  PubMed  Google Scholar 

  88. Jin H, Xu CX, Kim HW, Chung YS, Shin JY, Chang SH et al. Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-ras(LA1) mice. Cancer Gene Ther 2008; 15: 275–283.

    CAS  PubMed  Google Scholar 

  89. Adachi T, Hanaka S, Masuda T, Yoshihara H, Nagase H, Ohta K . Transduction of phosphatase and tensin homolog deleted on chromosome 10 into eosinophils attenuates survival, chemotaxis, and airway inflammation. J Immunol 2007; 179: 8105–8111.

    CAS  PubMed  Google Scholar 

  90. Friedenstein AJ, Piatetzky S II, Petrakova KV . Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390.

    CAS  PubMed  Google Scholar 

  91. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP . Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6: 230–247.

    CAS  PubMed  Google Scholar 

  92. Caplan AI . Mesenchymal stem cells. J Orthop Res 1991; 9: 641–650.

    CAS  PubMed  Google Scholar 

  93. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  94. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 2009; 183: 993–1004.

    CAS  PubMed  Google Scholar 

  95. Nauta AJ, Fibbe WE . Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110: 3499–3506.

    CAS  PubMed  Google Scholar 

  96. Le Blanc K, Pittenger M . Mesenchymal stem cells: progress toward promise. Cytotherapy 2005; 7: 36–45.

    CAS  PubMed  Google Scholar 

  97. Loebinger MR, Janes SM . Stem cells as vectors for antitumour therapy. Thorax 2010; 65: 362–369.

    PubMed  Google Scholar 

  98. Moniri MR, Sun XY, Rayat J, Dai D, Ao Z, He Z et al. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells. Cancer Gene Ther 2012; 19: 652–658.

    CAS  PubMed  Google Scholar 

  99. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342–349.

    CAS  PubMed  Google Scholar 

  100. Sun XY, Nong J, Qin K, Lu H, Moniri MR, Dai LJ et al. MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures. Anticancer Res 2011; 31: 3705–3712.

    CAS  PubMed  Google Scholar 

  101. Luria EA, Panasyuk AF, Friedenstein AY . Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 1971; 11: 345–349.

    CAS  PubMed  Google Scholar 

  102. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG . Circulating skeletal stem cells. J Cell Biol 2001; 153: 1133–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Warejcka DJ, Harvey R, Taylor BJ, Young HE, Lucas PA . A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. J Surg Res 1996; 62: 233–242.

    CAS  PubMed  Google Scholar 

  104. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC . Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23: 412–423.

    CAS  PubMed  Google Scholar 

  105. Young HE, Mancini ML, Wright RP, Smith JC, Black AC Jr., Reagan CR et al. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 1995; 202: 137–144.

    CAS  PubMed  Google Scholar 

  106. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA . Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2004; 6: 543–553.

    CAS  PubMed  Google Scholar 

  107. Tsai MS, Lee JL, Chang YJ, Hwang SM . Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004; 19: 1450–1456.

    PubMed  Google Scholar 

  108. Vaananen HK . Mesenchymal stem cells. Ann Med 2005; 37: 469–479.

    PubMed  Google Scholar 

  109. Ohyabu Y, Kaul Z, Yoshioka T, Inoue K, Sakai S, Mishima H et al. Stable and nondisruptive in vitro/in vivo labeling of mesenchymal stem cells by internalizing quantum dots. Hum Gene Ther 2009; 20: 217–224.

    CAS  PubMed  Google Scholar 

  110. Anjos-Afonso F, Siapati EK, Bonnet D . In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004; 117 (Pt 23): 5655–5664.

    CAS  PubMed  Google Scholar 

  111. da Silva Meirelles L, Chagastelles PC, Nardi NB . Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119 (Pt 11): 2204–2213.

    PubMed  Google Scholar 

  112. Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ . Mesenchymal stem cells. Arch Med Res 2003; 34: 565–571.

    CAS  PubMed  Google Scholar 

  113. Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL . Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett 2011; 305: 8–20.

    CAS  PubMed  Google Scholar 

  114. Caplan AI . Why are MSCs therapeutic? New data: new insight. J Pathol 2009; 217: 318–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T . Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521–2529.

    PubMed  Google Scholar 

  116. Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, Beresford JN . STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res 2003; 313: 281–290.

    CAS  PubMed  Google Scholar 

  117. Pittenger MF, Martin BJ . Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9–20.

    CAS  PubMed  Google Scholar 

  118. Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 2008; 111: 2631–2635.

    CAS  PubMed  Google Scholar 

  119. Uccelli A, Moretta L, Pistoia V . Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726–736.

    CAS  PubMed  Google Scholar 

  120. Giordano A, Galderisi U, Marino IR . From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27–35.

    CAS  PubMed  Google Scholar 

  121. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    CAS  PubMed  Google Scholar 

  122. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    CAS  PubMed  Google Scholar 

  123. Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 2003; 10: 228–241.

    CAS  PubMed  Google Scholar 

  124. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R et al. Transcoronary transplantation of progenitor cells after myocardial infarction. New Engl J Med 2006; 355: 1222–1232.

    CAS  PubMed  Google Scholar 

  125. Schachinger V, Assmus B, Erbs S, Elsasser A, Haberbosch W, Hambrecht R et al. Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial. Eur J Heart Fail 2009; 11: 973–979.

    PubMed  Google Scholar 

  126. Qu C, Mahmood A, Lu D, Goussev A, Xiong Y, Chopp M . Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 2008; 1208: 234–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chopp M, Li Y . Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002; 1: 92–100.

    PubMed  Google Scholar 

  128. Zhang ZX, Guan LX, Zhang K, Zhang Q, Dai LJ . A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 2008; 10: 134–139.

    CAS  PubMed  Google Scholar 

  129. Dezawa M, Hoshino M, Ide C . Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons. Expert Opin Biol Ther 2005; 5: 427–435.

    PubMed  Google Scholar 

  130. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F et al. Autologous hematopoietic stem cell transplantation for type 1 diabetes. Ann N Y Acad Sci 2008; 1150: 220–229.

    PubMed  Google Scholar 

  131. Li DS, Warnock GL, Tu HJ, Ao Z, He Z, Lu H et al. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes? Life Sci 2009; 85: 549–556.

    CAS  PubMed  Google Scholar 

  132. Dai LJ, Li HY, Guan LX, Ritchie G, Zhou JX . The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res 2009; 2: 16–25.

    PubMed  Google Scholar 

  133. Albini A, Sporn MB . The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007; 7: 139–147.

    CAS  PubMed  Google Scholar 

  134. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009; 250: 747–753.

    PubMed  Google Scholar 

  135. Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med 1986; 315: 1650–1659.

    CAS  PubMed  Google Scholar 

  136. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USAm 2009; 106: 4822–4827.

    CAS  Google Scholar 

  137. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS . Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008; 26: 831–841.

    CAS  PubMed  Google Scholar 

  138. Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P et al. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery 2009; 65: 610–624 discussion 624.

    PubMed  Google Scholar 

  139. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P . Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 2010; 184: 5885–5894.

    CAS  PubMed  Google Scholar 

  140. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27: 2614–2623.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203: 1235–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF et al. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 2009; 69: 8862–8867.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007; 25: 520–528.

    CAS  PubMed  Google Scholar 

  144. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  145. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13: 5020–5027.

    CAS  PubMed  Google Scholar 

  146. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24: 1254–1264.

    CAS  PubMed  Google Scholar 

  147. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USAm 2004; 101: 18117–18122.

    CAS  Google Scholar 

  148. Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 2005; 7: 623–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    CAS  PubMed  Google Scholar 

  150. Motaln H, Schichor C, Lah TT . Human mesenchymal stem cells and their use in cell-based therapies. Cancer 2010; 116: 2519–2530.

    CAS  PubMed  Google Scholar 

  151. Irene Von Lüttichau MN, Wechselberger Alexandra, Peters Christina, Henger Anna, Seliger Christian, Djafarzadeh Roghieh et al. Human Adult CD34− progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but Not CXCR4. Stem Cells Dev 2005; 14: 329–336.

    PubMed  Google Scholar 

  152. Salem HK, Thiemermann C . Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585–596.

    CAS  PubMed  Google Scholar 

  153. Kemp KC, Hows J, Donaldson C . Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 2005; 46: 1531–1544.

    PubMed  Google Scholar 

  154. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE . Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030–1041.

    CAS  PubMed  Google Scholar 

  155. De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 2007; 92: 440–449.

    CAS  PubMed  Google Scholar 

  156. Li H, Fan X, Houghton J . Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 2007; 101: 805–815.

    CAS  PubMed  Google Scholar 

  157. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166: 678–689.

    CAS  PubMed  Google Scholar 

  158. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D . Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem cell Res Ther 2010; 1: 2.

    PubMed  PubMed Central  Google Scholar 

  159. Shi Y, Hu G, Su J, Li W, Chen Q, Shou P et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 2010; 20: 510–518.

    CAS  PubMed  Google Scholar 

  160. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141–150.

    CAS  PubMed  Google Scholar 

  161. Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 2008; 38: 1745–1755.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Noel D, Djouad F, Bouffi C, Mrugala D, Jorgensen C . Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma 2007; 48: 1283–1289.

    CAS  PubMed  Google Scholar 

  163. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F . Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105: 2821–2827.

    CAS  PubMed  Google Scholar 

  164. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367–372.

    CAS  PubMed  Google Scholar 

  165. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    CAS  PubMed  Google Scholar 

  166. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D . Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    CAS  PubMed  Google Scholar 

  167. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    CAS  PubMed  Google Scholar 

  168. Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005; 90: 516–525.

    CAS  PubMed  Google Scholar 

  169. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL . Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 2007; 67: 8865–8873.

    CAS  PubMed  Google Scholar 

  170. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL . A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 2007; 13 (15 Pt 1): 4345–4354.

    CAS  PubMed  Google Scholar 

  171. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  172. Lazennec G, Jorgensen C . Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 2008; 26: 1387–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94: 678–685.

    CAS  PubMed  Google Scholar 

  174. Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J . Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 2003; 10: 621–629.

    CAS  PubMed  Google Scholar 

  175. Valdes F, Alvarez AM, Locascio A, Vega S, Herrera B, Fernandez M et al. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes. Mol Cancer Res 2002; 1: 68–78.

    CAS  PubMed  Google Scholar 

  176. Klymkowsky MW, Savagner P . Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol 2009; 174: 1588–1593.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101: 293–299.

    CAS  PubMed  Google Scholar 

  178. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010; 124: 317–326.

    CAS  PubMed  Google Scholar 

  179. Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M . Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 2008; 43: 1018–1023.

    CAS  PubMed  Google Scholar 

  180. Bernardo ME, Emons JA, Karperien M, Nauta AJ, Willemze R, Roelofs H et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res 2007; 48: 132–140.

    CAS  PubMed  Google Scholar 

  181. Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005; 7: 509–519.

    CAS  PubMed  Google Scholar 

  182. Rubio D, Garcia S, Paz MF, De la Cueva T, Lopez-Fernandez LA, Lloyd AC et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PloS One 2008; 3: e1398.

    PubMed  PubMed Central  Google Scholar 

  183. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568–1571.

    CAS  PubMed  Google Scholar 

  184. Maestroni GJ, Hertens E, Galli P . Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55: 663–667.

    CAS  PubMed  Google Scholar 

  185. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M . Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75: 248–255.

    CAS  PubMed  Google Scholar 

  186. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 2010.

  187. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18: 500–507.

    CAS  PubMed  Google Scholar 

  188. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    CAS  PubMed  Google Scholar 

  189. Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature 2005; 434: 843–850.

    CAS  PubMed  Google Scholar 

  190. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    CAS  PubMed  Google Scholar 

  191. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006; 442: 823–826.

    CAS  PubMed  Google Scholar 

  192. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 2004; 101: 1345–1356.

    CAS  PubMed  Google Scholar 

  193. Moon RT, Kohn AD, De Ferrari GV, Kaykas A . WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5: 691–701.

    CAS  PubMed  Google Scholar 

  194. Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 2008; 7: 245–251.

    CAS  PubMed  Google Scholar 

  195. Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009; 113: 289–298 1 p following 298.

    Google Scholar 

  196. Loebinger MR, Janes SM . Stem cells as vectors for antitumour therapy. Thorax 2010; 65: 362–369.

    PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the VGH and UBC Hospital Foundation. We are grateful for Mrs Crystal Robertson’s assistance for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M R Moniri or L-J Dai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moniri, M., Dai, LJ. & Warnock, G. The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther 21, 12–23 (2014). https://doi.org/10.1038/cgt.2013.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.83

Keywords

This article is cited by

Search

Quick links