Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeted expression of human folylpolyglutamate synthase for selective enhancement of methotrexate chemotherapy in osteosarcoma cells

Abstract

The antifolate methotrexate (MTX) is an important chemotherapeutic agent for treatment of osteosarcoma. This drug is converted intracellularly into polyglutamate derivates by the enzyme folylpolyglutamate synthase (FPGS). MTX polyglutamates show an enhanced and prolonged cytotoxicity in comparison to the monoglutamate. In the present study, we proved the hypothesis that transfer of the human fpgs gene into osteosarcoma cells may augment their MTX sensitivity. For this purpose, we employed the human osteocalcin (OC) promoter, which had shown marked osteosarcoma specificity in promoter studies using different luciferase assays in osteosarcoma and non-osteosarcoma cell lines. A recombinant lentiviral vector was generated with the OC promoter driving the expression of fpgs and the gene for enhanced green fluorescent protein (egfp), which was linked to fpgs by an internal ribosomal entry site (IRES). As the vector backbone contained only a self-inactivating viral LTR promoter, any interference of the OC promoter by unspecific promoter elements was excluded. We tested the expression of FPGS and enhanced green fluorescent protein (EGFP) after lentiviral transduction in various osteosarcoma cell lines (human MG-63 cells and TM 791 cells; rat osteosarcoma (ROS) 17/2.8 cells) and non-osteogenic tumor cell lines (293T human embryonic kidney cells, HeLa human cervix carcinoma cells). EGFP expression and MTX sensitivity were assessed in comparison with non-transduced controls. Whereas the OC promoter failed to enhance MTX sensitivity via FPGS expression in non-osteogenic tumor cell lines, the OC promoter mediated a markedly increased MTX cytotoxicity in all osteosarcoma cell lines after lentiviral transduction. The present chemotherapy-enhancing gene therapy system may have great potential to overcome in future MTX resistance in human osteosarcomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002; 20: 776–790.

    Article  PubMed  Google Scholar 

  2. Kempf-Bielack B, Bielack SS, Jürgens H, Branscheid D, Berdel WE, Exner GU et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol 2005; 23: 559–568.

    Article  PubMed  Google Scholar 

  3. Delepine N, Delepine G, Bacci G, Rosen G, Desbois JC . Influence of methotrexate dose intensity on outcome of patients with high grade osteogenic osteosarcoma. Analysis of the literature. Cancer 1996; 78: 2127–2135.

    Article  CAS  PubMed  Google Scholar 

  4. Guo W, Healey JH, Meyers PA, Ladanyi M, Huvos AG, Bertino JR et al. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res 1999; 5: 621–627.

    CAS  PubMed  Google Scholar 

  5. Ifergan I, Meller I, Issakov J, Assaraf YG . Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer 2003; 98: 1958–1966.

    Article  CAS  PubMed  Google Scholar 

  6. Kager L, Cheok M, Yang W, Zaza G, Cheng Q, Panetta JC et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest 2005; 115: 110–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stark M, Wichman C, Avivi I, Assaraf YG . Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood 2009; 113: 4362–4369.

    Article  CAS  PubMed  Google Scholar 

  8. Assaraf YG . Molecular basis of antifolate resistance. Cancer Metastasis Rev 2007; 26: 153–181.

    Article  CAS  PubMed  Google Scholar 

  9. Aghi M, Kramm CM, Breakefield XO . Folylpolyglutamyl synthetase gene transfer and glioma antifolate sensitivity in culture and in vivo. J Natl Cancer Inst 1999; 91: 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  10. Cho RC, Cole PD, Sohn KJ, Gaisano G, Croxford R, Kamen BA et al. Effects of folate and folylpolyglutamyl synthase modulation on chemosensitivity of breast cancer cells. Mol Cancer Ther 2007; 6: 2909–2920.

    Article  CAS  PubMed  Google Scholar 

  11. Ko SC, Cheon J, Kao C, Gotoh A, Shirakawa T, Sikes RA et al. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res 1996; 56: 4614–4619.

    CAS  PubMed  Google Scholar 

  12. Billiau A, Edy VG, Heremans H, Van Damme J, Desmyter J, Georgiades JA et al. Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 1977; 12: 11–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mengede C, Vukovic V, Glüsenkamp KH, Jähde E, Rajewsky MP . Development of acid-labile immunoconjugates for tumor-specific activation of cytotoxins. J Cancer Res Clin Oncol 1995; 121 (Suppl. 1): A52.

    Article  Google Scholar 

  14. Majeska RJ, Rodan GA . The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem 1982; 257: 3362–3365.

    CAS  PubMed  Google Scholar 

  15. Scherer WF, Syverton JT, Gey GO . Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953; 97: 695–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rio DC, Clark SG, Tjian R . A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction. Science 1985; 227: 23–28.

    Article  CAS  PubMed  Google Scholar 

  17. Steffens S, Tebbets J, Kramm CM, Lindemann D, Flake A, Sena-Esteves M . Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. J Neurooncol 2004; 70: 281–288.

    Article  PubMed  Google Scholar 

  18. Howe SJ, Chandrashekran A . Vector systems for prenatal gene therapy: principles of retrovirus vector design and production. Methods Mol Biol 2012; 891: 85–107.

    CAS  PubMed  Google Scholar 

  19. Cheon J, Ko SC, Gardner TA, Shirakawa T, Gotoh A, Kao C et al. Chemogene therapy: osteocalcin promoter-based suicide gene therapy in combination with methotrexate in a murine osteosarcoma model. Cancer Gene Ther 1997; 4: 359–365.

    CAS  PubMed  Google Scholar 

  20. Shirakawa T, Ko SC, Gardner TA, Cheon J, Miyamoto T, Gotoh A et al. In vivo suppression of osteosarcoma pulmonary metastasis with intravenous osteocalcin promoter-based toxic gene therapy. Cancer Gene Ther 1998; 5: 274–280.

    CAS  PubMed  Google Scholar 

  21. Benjamin R, Helman L, Meyers P, Reaman G . A phase I/II dose escalation and activity study of intravenous injections of OCaP1 for subjects with refractory osteosarcoma metastatic to lung. Hum Gene Ther 2001; 12: 1591–1593.

    CAS  PubMed  Google Scholar 

  22. Shirakawa T, Gotoh A, Wada Y, Kamidono S, Ko SC, Kao C et al. Tissue-specific promoters in gene therapy for the treatment of prostate cancer. Mol Urol 2000; 4: 73–82.

    Article  CAS  PubMed  Google Scholar 

  23. Kubo H, Gardner TA, Wada Y, Koeneman KS, Gotoh A, Yang L et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther 2003; 14: 227–241.

    Article  CAS  PubMed  Google Scholar 

  24. Morrison NA, Shine J, Fragonas JC, Verkest V, McMenemy ML, Eisman JA . 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 1989; 246: 1158–1161.

    Article  CAS  PubMed  Google Scholar 

  25. Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci USA 1989; 86: 1143–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lian JB, Stein GS, Stein JL, Van Wijnen A, McCabe L, Banerjee C et al. The osteocalcin gene promoter provides a molecular blueprint for regulatory mechanisms controlling bone tissue formation: role of transcription factors involved in development. Connect Tissue Res 1996; 35: 15–21.

    Article  CAS  PubMed  Google Scholar 

  27. Arbour NC, Darwish HM, DeLuca HF . Transcriptional control of the osteocalcin gene by 1,25-dihydroxyvitamin D-2 and its 24-epimer in rat osteosarcoma cells. Biochim Biophys Acta 1995; 1263: 147–153.

    Article  PubMed  Google Scholar 

  28. Steffens S, Sandquist A, Frank S, Fischer U, Lex C, Rainov NG et al. A neuroblastoma-selective suicide gene therapy approach using the tyrosine hydroxylase promoter. Pediatr Res 2004; 56: 268–277.

    Article  CAS  PubMed  Google Scholar 

  29. Rainov NG . A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11: 2389–2401.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang G, Gurtu V, Kain SR . An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 1996; 227: 707–711.

    Article  CAS  PubMed  Google Scholar 

  31. Jang SK, Pestova TV, Hellen CU, Witherell GW, Wimmer E . Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 1990; 44: 292–309.

    Article  CAS  PubMed  Google Scholar 

  32. Gurtu V, Yan G, Zhang G . IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem Biophys Res Commun 1996; 229: 295–298.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Elterninitiative Kinderkrebsklinik Düsseldorf e.V. We thank O Adams, Düsseldorf, for performing p24-enzyme-linked immunosorbent assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Kramm.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienemann, K., Staege, M., Howe, S. et al. Targeted expression of human folylpolyglutamate synthase for selective enhancement of methotrexate chemotherapy in osteosarcoma cells. Cancer Gene Ther 20, 514–520 (2013). https://doi.org/10.1038/cgt.2013.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.48

Keywords

This article is cited by

Search

Quick links