Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of β-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs

Abstract

Extracellular activation of hydrophilic glucuronide prodrugs by β-glucuronidase (βG) was examined to increase the therapeutic efficacy of bacteria-directed enzyme prodrug therapy (BDEPT). βG was expressed on the surface of Escherichia coli by fusion to either the bacterial autotransporter protein Adhesin (membrane βG (mβG)/AIDA) or the lipoprotein (lpp) outermembrane protein A (mβG/lpp). Both mβG/AIDA and mβG/lpp were expressed on the bacterial surface, but only mβG/AIDA displayed enzymatic activity. The rate of substrate hydrolysis by mβG/AIDA-BL21cells was 2.6-fold greater than by pβG-BL21 cells, which express periplasmic βG. Human colon cancer HCT116 cells that were incubated with mβG/AIDA-BL21 bacteria were sensitive to a glucuronide prodrug (p-hydroxy aniline mustard β-D-glucuronide, HAMG) with an half maximal inhibitory concentration (IC50) value of 226.53±45.4 μM, similar to the IC50 value of the active drug (p-hydroxy aniline mustard, pHAM; 70.6±6.75 μM), indicating that mβG/AIDA on BL21 bacteria could rapidly and efficiently convert HAMG to an active anticancer agent. These results suggest that surface display of functional βG on bacteria can enhance the hydrolysis of glucuronide prodrugs and may increase the effectiveness of BDEPT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 2004; 22: 313–320.

    Article  CAS  PubMed  Google Scholar 

  2. Lee CH . Engineering bacteria toward tumor targeting for cancer treatment: current state and perspectives. Appl Microbiol Biotechnol 2012; 93: 517–523.

    Article  CAS  PubMed  Google Scholar 

  3. Pawelek JM, Low KB, Bermudes D . Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 1997; 57: 4537–4544.

    CAS  PubMed  Google Scholar 

  4. Jain KK . Use of bacteria as anticancer agents. Expert Opin Biol Ther 2001; 1: 291–300.

    Article  CAS  PubMed  Google Scholar 

  5. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002; 20: 142–152.

    Article  PubMed  Google Scholar 

  6. Cunningham C, Nemunaitis J . A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther 2001; 12: 1594–1596.

    CAS  PubMed  Google Scholar 

  7. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clin Cancer Res 2008; 14: 4259–4266.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng CM, Lu YL, Chuang KH, Hung WC, Shiea J, Su YC et al. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther 2008; 15: 393–401.

    Article  CAS  PubMed  Google Scholar 

  9. Sznol M, Lin SL, Bermudes D, Zheng LM, King I . Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 2000; 105: 1027–1030.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang SM, Chern JW, Yeh MY, Ng JC, Tung E, Roffler SR . Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer Res 1992; 52: 4484–4491.

    CAS  PubMed  Google Scholar 

  11. Leu YL, Roffler SR, Chern JW . Design and synthesis of water-soluble glucuronide derivatives of camptothecin for cancer prodrug monotherapy and antibody-directed enzyme prodrug therapy (ADEPT). J Med Chem 1999; 42: 3623–3628.

    Article  CAS  PubMed  Google Scholar 

  12. Tietze LF, Schuster HJ, Schmuck K, Schuberth I, Alves F . Duocarmycin-based prodrugs for cancer prodrug monotherapy. Bioorg Med Chem 2008; 16: 6312–6318.

    Article  CAS  PubMed  Google Scholar 

  13. Tietze LF, Schmuck K, Schuster HJ, Muller M, Schuberth I . Synthesis and biological evaluation of prodrugs based on the natural antibiotic duocarmycin for use in ADEPT and PMT. Chemistry 2011; 17: 1922–1929.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng TL, Chou WC, Chen BM, Chern JW, Roffler SR . Characterization of an antineoplastic glucuronide prodrug. Biochem Pharmacol 1999; 58: 325–328.

    Article  CAS  PubMed  Google Scholar 

  15. Su YC, Chuang KH, Wang YM, Cheng CM, Lin SR, Wang JY et al. Gene expression imaging by enzymatic catalysis of a fluorescent probe via membrane-anchored beta-glucuronidase. Gene Ther 2007; 14: 565–574.

    Article  CAS  PubMed  Google Scholar 

  16. Chen KC, Cheng TL, Leu YL, Prijovich ZM, Chuang CH, Chen BM et al. Membrane-localized activation of glucuronide prodrugs by beta-glucuronidase enzymes. Cancer Gene Ther 2007; 14: 187–200.

    Article  CAS  PubMed  Google Scholar 

  17. Lattemann CT, Maurer J, Gerland E, Meyer TF . Autodisplay: functional display of active beta-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. J Bacteriol 2000; 182: 3726–3733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jose J, Bernhardt R, Hannemann F . Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli. J Biotechnol 2002; 95: 257–268.

    Article  CAS  PubMed  Google Scholar 

  19. Earhart CF . Use of an Lpp-OmpA fusion vehicle for bacterial surface display. Methods Enzymol 2000; 326: 506–516.

    Article  CAS  PubMed  Google Scholar 

  20. Francisco JA, Earhart CF, Georgiou G . Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci USA 1992; 89: 2713–2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Francisco JA, Stathopoulos C, Warren RA, Kilburn DG, Georgiou G . Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnology 1993; 11: 491–495.

    CAS  PubMed  Google Scholar 

  22. Daugherty PS, Chen G, Olsen MJ, Iverson BL, Georgiou G . Antibody affinity maturation using bacterial surface display. Protein Eng 1998; 11: 825–832.

    Article  CAS  PubMed  Google Scholar 

  23. Wang JY, Chao YP . Immobilization of cells with surface-displayed chitin-binding domain. Appl Environ Microbiol 2006; 72: 927–931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Konieczny MPJ, Benz I, Hollinderbaumer B, Beinke C, Niederweis M, Schmidt MA . Modular organization of the AIDA autotransporter translocator: the N-terminal beta1-domain is surface-exposed and stabilizes the transmembrane beta2-domain. Antonie Van Leeuwenhoek 2001; 80: 19–34.

    Article  CAS  PubMed  Google Scholar 

  25. Georgiou G, Stephens DL, Stathopoulos C, Poetschke HL, Mendenhall J, Earhart CF . Display of beta-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp-‘OmpA’-beta-lactamase fusions. Protein Eng 1996; 9: 239–247.

    Article  CAS  PubMed  Google Scholar 

  26. Genestier L, Kasibhatla S, Brunner T, Green DR . Transforming growth factor beta1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc. J Exp Med 1999; 189: 231–239.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ivanov VN, Krasilnikov M, Ronai Z . Regulation of Fas expression by STAT3 and c-Jun is mediated by phosphatidylinositol 3-kinase-AKT signaling. J Biol Chem 2002; 277: 4932–4944.

    Article  CAS  PubMed  Google Scholar 

  28. Dirkx AE, Oude Egbrink MG, Kuijpers MJ, van der Niet ST, Heijnen VV, Bouma-ter Steege JC et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 2003; 63: 2322–2329.

    CAS  PubMed  Google Scholar 

  29. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 2004; 22: 657–682.

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman RM . Tumor-seeking Salmonella amino acid auxotrophs. Curr Opin Biotechnol 2011; 22: 917–923.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Li Z, Mao S, Ma B, Zhou S, Deng L et al. Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice. Cancer Gene Ther 2011; 18: 884–896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cao HD, Yang YX, Lu L, Liu SN, Wang PL, Tao XH et al. Attenuated Salmonella typhimurium carrying TRAIL and VP3 genes inhibits the growth of gastric cancer cells in vitro and in vivo. Tumori 2010; 96: 296–303.

    Article  CAS  PubMed  Google Scholar 

  33. Tangney M, van Pijkeren JP, Gahan CG . The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy. Bioeng Bugs 2010; 1: 284–287.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ganai S, Arenas RB, Forbes NS . Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer 2009; 101: 1683–1691.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tong Q, Liu K, Lu XM, Shu XG, Wang GB . Construction and characterization of a novel fusion protein MG7-scFv/SEB against gastric cancer. J Biomed Biotechnol 2010; 2010: 121094.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Fishman WH, Kato K, Anstiss CL, Green S . Human serum beta-glucuronidase; its measurement and some of its properties. Clin Chim Acta 1967; 15: 435–447.

    Article  CAS  PubMed  Google Scholar 

  37. Weenen H, van Maanen JM, de Planque MM, McVie JG, Pinedo HM . Metabolism of 4'-modified analogs of doxorubicin. Unique glucuronidation pathway for 4'-epidoxorubicin. Eur J Cancer Clin Oncol 1984; 20: 919–926.

    Article  CAS  PubMed  Google Scholar 

  38. Rivory LP, Robert J . Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan. Cancer Chemother Pharmacol 1995; 36: 176–179.

    Article  CAS  PubMed  Google Scholar 

  39. Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM et al. A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 2001; 84: 550–557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Schmidt F, Monneret C . Prodrug mono therapy: synthesis and biological evaluation of an etoposide glucuronide-prodrug. Bioorg Med Chem 2003; 11: 2277–2283.

    Article  CAS  PubMed  Google Scholar 

  41. Alaoui AE, Saha N, Schmidt F, Monneret C, Florent JC . New taxol (paclitaxel) prodrugs designed for ADEPT and PMT strategies in cancer chemotherapy. Bioorg Med Chem 2006; 14: 5012–5019.

    Article  PubMed  Google Scholar 

  42. Denny WA . Prodrugs for Gene-directed enzyme-prodrug therapy (suicide gene therapy). J Biomed Biotechnol 2003; 1: 48–70.

    Article  Google Scholar 

  43. Ho YC, Ho KJ . Differential quantitation of urinary beta-glucuronidase of human and bacterial origins. J Urol 1985; 134: 1227–1230.

    Article  CAS  PubMed  Google Scholar 

  44. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD . Extracellular pH distribution in human tumours. Int J Hyperthermia 1995; 11: 211–216.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Lin Y, Gillies RJ . Tumor pH and its measurement. J Nucl Med 2010; 51: 1167–1170.

    Article  CAS  PubMed  Google Scholar 

  46. Haisma HJ, van Muijen M, Pinedo HM, Boven E . Comparison of two anthracycline-based prodrugs for activation by a monoclonal antibody-beta-glucuronidase conjugate in the specific treatment of cancer. Cell Biophys 1994; 24-25: 185–192.

    Article  CAS  PubMed  Google Scholar 

  47. Cheng TL, Wei SL, Chen BM, Chern JW, Wu MF, Liu PW et al. Bystander killing of tumour cells by antibody-targeted enzymatic activation of a glucuronide prodrug. Br J Cancer 1999; 79: 1378–1385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yang C, Zhao Q, Liu Z, Li Q, Qiao C, Mulchandani A et al. Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. Environ Sci Technol 2008; 42: 6105–6110.

    Article  CAS  PubMed  Google Scholar 

  49. Daugherty PS, Olsen MJ, Iverson BL, Georgiou G . Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng 1999; 12: 613–621.

    Article  CAS  PubMed  Google Scholar 

  50. Isoda R, Simanski SP, Pathangey L, Stone AE, Brown TA . Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector. Vaccine 2007; 25: 117–126.

    Article  CAS  PubMed  Google Scholar 

  51. Nhan NT, Gonzalez de Valdivia E, Gustavsson M, Hai TN, Larsson G . Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact 2011; 10: 22.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kramer U, Rizos K, Apfel H, Autenrieth IB, Lattemann CT . Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains. Infect Immun 2003; 71: 1944–1952.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gehrmann MC, Opper M, Sedlacek HH, Bosslet K, Czech J . Biochemical properties of recombinant human beta-glucuronidase synthesized in baby hamster kidney cells. Biochem J 1994; 301 (Pt 3): 821–828.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Program for Biopharmaceuticals, National Science Council, Taipei, Taiwan (NSC101-2325-B-037-001, NSC101-2321-B-037-001, NSC101-2313-B-022-001), the Department of Health, Executive Yuan, Taiwan (DOH100-TD-C-111-002) and the Grant of Biosignature in Colorectal Cancers, Academia Sinica, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Roffler or T-L Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, CM., Chen, F., Lu, YL. et al. Expression of β-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs. Cancer Gene Ther 20, 276–281 (2013). https://doi.org/10.1038/cgt.2013.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.17

Keywords

This article is cited by

Search

Quick links