Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance

Abstract

The increasing importance of targeting drugs in the treatment of several tumor entities (breast, colon, lung, malignant melanoma (MM), lymphoma, and so on) and the necessity of a companion diagnostic (human epidermal growth factor receptor 2, Kirsten rat sarcoma viral oncogene, epidermal growth factor receptor (EGFR), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), and so on) is leading to new challenges for surgical pathology. As all the biomarkers to be specifically detected are tissue based, a precise and reliable diagnostic is absolutely crucial. To meet this challenge, surgical pathology has adapted a number of molecular methods (semi-quantitative immunohistochemistry, fluorescence in situ hybridization), PCR and its multiple variants, (pyro/Sanger) sequencing, next-generation sequencing, DNA-arrays, methylation analyses, and so on) to be applicable for formalin-fixed paraffin-embedded (FFPE) tissue. To read a patients’ tissue as ‘deeply’ as possible and to obtain information on morphological, genetic, proteomic as well as epigenetic background is the actual task of pathologists and molecular biologists in order to provide the clinicians with information relevant for individualized medicine. The intensified cooperation of clinicians and pathologists will provide the basis of improved clinical drug selection as well as guide development of new cancer gene therapies and molecularly targeted drugs by research units and the pharmaceutical industry. This review will give some information on (1) biomarker detection methods adapted to FFPE tissue, (2) the potency of predictive pathology in tumor detection and treatment and (3) the implications of pathology on the development of new drugs in molecularly targeted and gene therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dietel M . Targeted Therapies in Cancer. Springer-Verlag Berlin, Heidelberg, 2007.

    Google Scholar 

  2. Bohmann K, Hennig G, Rogel U, Poremba C, Mueller BM, Fritz P et al. RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Clin Chem 2009; 55: 1719–1727.

    CAS  PubMed  Google Scholar 

  3. Chen B, Clejan S . Rapid preparation of tissue DNA from paraffin-embedded blocks and analysis by polymerase chain reaction. J Histochem Cytochem 1993; 41: 765–768.

    CAS  PubMed  Google Scholar 

  4. Gräntzdörffer I, Yumlu S, Gioeva Z, von Wasielewski R, Ebert MP, Röcken C . Comparison of different tissue sampling methods for protein extraction from formalin-fixed and paraffin-embedded tissue specimens. Exp Mol Pathol 2010; 88: 190–196.

    PubMed  Google Scholar 

  5. Okello JB, Zurek J, Devault AM, Kuch M, Okwi AL, Sewankambo NK et al. Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues. Anal Biochem 2010; 400: 110–117.

    CAS  PubMed  Google Scholar 

  6. Stanta G . Guidelines for Molecular Analysis in Archive Tissues. Springer-Verlag Berlin, Heidelberg, 2011.

    Google Scholar 

  7. Lewis F, Maughan NJ, Smith V, Hillan K, Quirke P . Unlocking the archive-gene expression in pa-raffin-embedded tissue. J Pathol 2001; 195: 66–71.

    CAS  PubMed  Google Scholar 

  8. Farragher SM, Tanney A, Kennedy RD, Paul Harkin D . RNA expression analysis from formalin fi-xed paraffin embedded tissues. Histochem Cell Biol 2008; 130: 435–445.

    CAS  PubMed  Google Scholar 

  9. Weichert W, Schewe C, Lehmann A, Sers C, Denkert C, Budczies J et al. KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics: comparison of methods and impact of histology. J Mol Diagn 2010; 12: 35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenze D, Müller H-H, Hummel M . Considerations for the use of formalin-fixed and paraffin-embedded tissue specimens for clonality analysis. J Hematopathol 2012; 5: 27–34.

    Google Scholar 

  11. Penzel R, Sers C, Chen Y, Lehmann-Mühlenhoff U, Merkelbach-Bruse S, Jung A et al. EGFR mutation detection in NSCLC-assessment of diagnostic application and recommendations of the German Panel for Mutation Testing in NSCLC. Virchows Arch 2011; 458: 95–98.

    CAS  PubMed  Google Scholar 

  12. Wittekind C, Meyer HJ . TNM Classification of Malignant Tumors, UICC 7th edn Wiley-Blackwell Weinheim, Germany, 2010.

    Google Scholar 

  13. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    CAS  PubMed  Google Scholar 

  14. Hammond ME, Hayes DF, Wolff AC . Clinical notice for American Society of Clinical Oncology-College of American Pathologists guideline recommendations on ER/PgR and HER2 testing in breast cancer. J Clin Oncol 2011; 29: e458.

    PubMed  Google Scholar 

  15. Moelans CB, de Weger RA, Van der Wall E, van Diest PJ . Current technologies for HER2 testing in breast cancer. Crit Rev Oncol Hematol 2011; 80: 380–392.

    CAS  PubMed  Google Scholar 

  16. Stern HM . Improving treatment of HER2-positive cancers: opportunities and challenges. Sci Transl Med 2012; 4 127rv2.

    PubMed  Google Scholar 

  17. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26: 1626–1634.

    CAS  PubMed  Google Scholar 

  18. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–1765.

    CAS  PubMed  Google Scholar 

  19. Dietel M, Schäfer R . Systems pathology--or how to solve the complex problem of predictive pathology. Virchows Arch 2008; 453: 309–312.

    PubMed  Google Scholar 

  20. Thibodeau SN, Bren G, Schaid D . Microsatellite instability in cancer of the proximal colon. Science 1993; 260: 816–819.

    CAS  PubMed  Google Scholar 

  21. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M . Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993; 363: 558–561.

    Article  CAS  PubMed  Google Scholar 

  22. Kim H, Jen J, Vogelstein B, Hamilton SR . Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 1994; 145: 148–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000; 342: 69–77.

    CAS  PubMed  Google Scholar 

  24. Roth AD, Delorenzi M, Tejpar S, Yan P, Klingbeil D, Fiocca R et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst 2012; 104: 1635–1646.

    CAS  PubMed  Google Scholar 

  25. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261–268.

    CAS  PubMed  Google Scholar 

  26. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010; 28: 3219–3226.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomas R, Wolf J . Personalized therapy of lung cancer. Onkologie 2012; 35: 14–19.

    CAS  PubMed  Google Scholar 

  28. Heist RS, Engelman JA . SnapShot: non-small cell lung cancer. Cancer Cell 2012; 21: 448.

    CAS  PubMed  Google Scholar 

  29. Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS . K-ras mutations in non−small-cell lung carcinoma: a review. Clin Lung Cancer 2006; 8: 30–38.

    CAS  PubMed  Google Scholar 

  30. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M . Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 1984; 223: 661–664.

    CAS  PubMed  Google Scholar 

  31. Smit EF, Dingemans AM, Thunnissen FB, Hochstenbach MM, van Suylen RJ, Postmus PE . Sorafenib in patients with advanced non-small cell lung cancer that harbor K-ras mutations: a brief report. J Thorac Oncol 2010; 5: 719–720.

    PubMed  Google Scholar 

  32. Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 2013; 14: 38–47.

    PubMed  Google Scholar 

  33. Guan JL, Zhong WZ, An SJ, Yang JJ, Su J, Chen ZH et al. KRAS Mutation in Patients with Lung Cancer: a predictor for poor prognosis but not for EGFR-TKIs or chemotherapy. Ann Surg Oncol. (e-pub ahead of print 4 December 2012 doi:10.1245/s10434-012-2754-z.

    PubMed  Google Scholar 

  34. Yatabe Y . EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev 2010; 29: 23–36.

    CAS  PubMed  Google Scholar 

  35. Sharma SV, Bell DW, Settleman J, Haber DA . Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–181.

    CAS  PubMed  Google Scholar 

  36. Li AR, Chitale D, Riely GJ, Pao W, Miller VA, Zakowski MF et al. EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression. J Mol Diagn 2008; 10: 242–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol 2010; 5: 1706–1713.

    PubMed  Google Scholar 

  38. Brandão EP, Pantarotto MG, Cruz M . A novel EGFR mutation in exon 18 with high sensitivity to EGFR TKI treatment with reduced dose [letter]. J Thorac Oncol 2012; 7: e32.

    PubMed  Google Scholar 

  39. Sholl LM, Xiao Y, Joshi V, Yeap BY, Cioffredi LA, Jackman DM et al. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol 2010; 133: 922–934.

    CAS  PubMed  Google Scholar 

  40. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C et alfor the Spanish Lung Cancer Group. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361: 958–967.

    CAS  PubMed  Google Scholar 

  41. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448: 561–566.

    CAS  PubMed  Google Scholar 

  42. Solomon B, Varella-Garcia M, Camidge DR . ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol 2009; 4: 1450–1454.

    PubMed  Google Scholar 

  43. Yoshida A, Tsuta K, Nakamura H, Kohno T, Takahashi F, Asamura H et al. Comprehensive histologic analysis of ALK-rearranged lung carcinomas. Am J Surg Pathol 2011; 35: 1226–1234.

    PubMed  Google Scholar 

  44. Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 2008; 14: 4275–4283.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 2008; 3: 13–17.

    PubMed  Google Scholar 

  46. Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009; 15: 3143–3149.

    CAS  PubMed  Google Scholar 

  47. Camidge DR, Kono SA, Flacco A, Tan AC, Doebele RC, Zhou Q et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res 2010; 16: 581–590.

    Google Scholar 

  48. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 2011; 12: 1004–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009; 115: 1723–1733.

    CAS  PubMed  Google Scholar 

  50. Tanaka H, Hayashi A, Morimoto T, Taima K, Tanaka Y, Shimada M et al. A case of lung adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene. BMC Cancer 2012; 12: 558.

    PubMed  PubMed Central  Google Scholar 

  51. Pollock PM, Trent JM . The genetics of cutaneous melanoma. Clin Lab Med 2000; 20: 667–690.

    CAS  PubMed  Google Scholar 

  52. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 2011; 29: 1239–1246.

    PubMed  Google Scholar 

  53. Flaherty KT . BRAF inhibitors and melanoma. Cancer J 2011; 17: 505–511.

    CAS  PubMed  Google Scholar 

  54. Naber SP . Molecular pathology-detection of neoplasia. N Engl J Med 1994; 331: 1508–1510.

    CAS  PubMed  Google Scholar 

  55. Villanueva A, Reyes G, Cuatrecasas M, Martínez A, Erill N, Lerma E et al. Diagnostic utility of K-ras mutations in fine-needle aspirates of pancreatic masses. Gastroenterology 1996; 110: 1587–1594.

    CAS  PubMed  Google Scholar 

  56. Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M, Rosenbaum E et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 2004; 89: 2867–2872.

    CAS  PubMed  Google Scholar 

  57. Kaufmann O, Fietze E, Dietel M . Immunohistochemical diagnosis in cancer metastasis of unknown primary tumor. Der Pathologe 2002; 23: 183–197.

    CAS  PubMed  Google Scholar 

  58. Oien KA, Dennis JL . Diagnostic work-up of carcinoma of unknown primary: from immunohistochemistry to molecular profiling. Ann Oncol 2012; 23: x 271–x 277.

    Google Scholar 

  59. Hainsworth JD, Rubin MS, Spigel DR, Boccia RV, Raby S, Quinn R et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the sarah cannon research institute. J Clin Oncol 2013; 31: 217–223.

    CAS  PubMed  Google Scholar 

  60. Ramaswamy S, Ross KN, Lander ES, Golub TR . A molecular signature of metastasis in primary solid tumors. Nature Genetics 2002; 33: 49–54.

    PubMed  Google Scholar 

  61. Filipits M, Rudas M, Raimund Jakesz R . A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 2011; 17: 6012–6020.

    CAS  PubMed  Google Scholar 

  62. Müller BM, Brase JC, Haufe F, Weber KE, Budczies J, Petry C et al. Comparison of the RNA-based EndoPredict multigene test between core biopsies and corresponding surgical breast cancer sections. J Clin Pathol 2012; 65: 660–662.

    PubMed  Google Scholar 

  63. Dubsky P, Filipits M, Jakesz R, Rudas M, Singer CF, Greil R et alOn behalf of the Austrian Breast and Colorectal Cancer Study Group (ABCSG). EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol 2013; 24: 640–647.

    CAS  PubMed  Google Scholar 

  64. Goldhirsch A, Ingle JN, Gelber RD, Coatesas AS, Thürlimann B, Senn HJ, and Panel members. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009; 20: 1319–1329.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van Vijver MJ . WHO Classification of Tumours of the Breast. Eds.. 2012.

  66. Denkert C, Kronenwett R, Schlake W, Bohmann K, Penzel R, Weber KE et al. Decentral gene expression analysis for ER+/Her2- breast cancer: results of a proficiency testing program for the EndoPredict assay. Virchows Arch 2012; 460: 251–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    CAS  PubMed  Google Scholar 

  68. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    CAS  PubMed  Google Scholar 

  69. Guilhot F, Druker B, Larson RA, Gathmann I, So C, Waltzman R et al. High rates of durable response are achieved with imatinib after treatment with interferon alpha plus cytarabine: results from the International Randomized Study of Interferon and STI571 (IRIS) trial. Haematologica 2009; 94: 1669–1675.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  71. Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109–3117.

    PubMed  PubMed Central  Google Scholar 

  72. Sahm F, Capper D, Preusser M, Meyer J, Stenzinger A, Lasitschka F et al. BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood 2012; 120: e28–e34.

    CAS  PubMed  Google Scholar 

  73. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP et al. BRAF mutations in hairy-cell leukemia. N Engl J Med 2011; 364: 2305–2315.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gambacorti-Passerini C, Messa C, Pogliani EM . Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 2011; 364: 775–776.

    PubMed  Google Scholar 

  75. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dietel M, Sers C . Personalized medicine and development of targeted therapies: the upcoming challenge for diagnostic molecular pathology. A review. Virchows Arch 2006; 448: 744–755.

    PubMed  Google Scholar 

  78. Tubbs RR, Stoler MH . Cell and Tissue Based Molecular Pathology. Elsevier Philadelphia, PA, USA, 2009.

    Google Scholar 

  79. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    CAS  PubMed  Google Scholar 

  80. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  81. Rowley JD . Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 2001; 1: 245–250.

    CAS  PubMed  Google Scholar 

  82. Bovée JV, Hogendoorn PC . Molecular pathology of sarcomas: concepts and clinical implications. Virchows Arch 2010; 456: 193–199.

    PubMed  Google Scholar 

  83. Romeo S, Dei Tos AP . Soft tissue tumors associated with EWSR1 translocation. Virchows Arch 2010; 456: 219–234.

    CAS  PubMed  Google Scholar 

  84. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. The. 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.

    PubMed  PubMed Central  Google Scholar 

  85. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP . Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 1994; 145: 1175–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006; 24: 2707–2714.

    CAS  PubMed  Google Scholar 

  87. Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, Stockhammer F et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. J Clin Oncol 2009; 27: 5874–5880.

    CAS  PubMed  Google Scholar 

  88. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 997–1003.

    CAS  PubMed  Google Scholar 

  89. Gerson SL . MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004; 4: 296–307.

    CAS  PubMed  Google Scholar 

  90. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A . Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116: 597–602.

    CAS  PubMed  Google Scholar 

  92. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 2010; 120: 707–718.

    PubMed  Google Scholar 

  93. Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 2010; 5: e15661.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Clin Genet 2012; 81: 503-510. m.E. muss das doch WH von 95 sein???!! Habe nur das hier gefunden Nature 2012; 486: 537–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Desai AN, Jere A . Next-generation sequencing: ready for the clinics? Clin Genet 2012; 81: 503–510.

    CAS  PubMed  Google Scholar 

  96. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 2011; 6: e22751.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marchetti A, Del Grammastro M, Filice G, Felicioni L, Rossi G, Graziano P et al. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications. PLoS One 2012; 7: e42164.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Dietel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietel, M., Jöhrens, K., Laffert, M. et al. Predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther 20, 211–221 (2013). https://doi.org/10.1038/cgt.2013.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.13

Keywords

This article is cited by

Search

Quick links