Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of FOXM1 transcription factor suppresses cell proliferation and tumor growth of breast cancer

Abstract

The forkhead box M1 (FOXM1) transcription factor regulates the expression of genes essential for cell proliferation and transformation and is implicated in tumorigenesis and tumor progression. FOXM1 has been considered as a potential target for the prevention and/or therapeutic intervention in human carcinomas. In this study, we observed a strong expression of FOXM1 in clinical tissue specimens and cell lines of human breast cancer and a correlation between FOXM1 levels and the proliferation ability in the tested MCF-7, MDA-MB-231 and ZR-75-30 cells. By using an adenovirus vector (named AdFOXM1shRNA) that expresses a short hairpin RNA (shRNA) to downregulate FOXM1 expression specifically, we found that the knockdown of FOXM1 expression diminished the proliferation and anchorage-independent growth of the breast cancer cells. The FOXM1 silencing in ZR-75-30 cells dramatically prevented the tumorigenicity of the AdFOXM1shRNA-treated cells in vitro and in vivo. Furthermore, the efficacy of AdFOXM1shRNA for tumor gene therapy was assessed with the breast cancer xenograft mouse model and the tumor growth was significantly suppressed when inoculated mice were injected with AdFOXM1shRNA in the tumors. Together, our results suggest that FOXM1 is a potential therapeutic target for breast cancer and AdFOXM1shRNA may be an additional gene therapeutic intervention for breast cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ et al. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 2011; 378: 1461–1484.

    Article  PubMed  Google Scholar 

  2. Simpson JF, Gray R, Dressler LG, Cobau CD, Falkson CI, Gilchrist KW et al. Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 2000; 18: 2059–2069.

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  5. Benson JR, Jatoi I, Keisch M, Esteva FJ, Makris A, Jordan VC . Early breast cancer. Lancet 2009; 373: 1463–1479.

    Article  PubMed  Google Scholar 

  6. Kaestner KH, Knochel W, Martinez DE . Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14: 142–146.

    CAS  PubMed  Google Scholar 

  7. Costa RH, Kalinichenko VV, Holterman AX, Wang X . Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003; 38: 1331–1347.

    Article  CAS  PubMed  Google Scholar 

  8. Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG et al. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 1997; 17: 1626–1641.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Kiyokawa H, Dennewitz MB, Costa RH . The forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA 2002; 99: 16881–16886.

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Quail E, Hung N-J, Tan Y, Ye H, Costa RH . Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevents age-related proliferation defects in regenerating liver. Proc Natl Acad Sci USA 2001; 98: 11468–11473.

    Article  CAS  PubMed  Google Scholar 

  11. Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang I-C, Dennewitz MB et al. The mouse forkhead box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 2004; 276: 74–88.

    Article  CAS  PubMed  Google Scholar 

  12. Ye H, Holterman A, Yoo KW, Franks RR, Costa RH . Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S-phase. Mol Cell Biol 1999; 19: 8570–8580.

    Article  CAS  PubMed  Google Scholar 

  13. Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 2005; 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  14. Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 2005; 25: 10875–10894.

    Article  CAS  PubMed  Google Scholar 

  15. Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 2004; 18: 830–850.

    Article  CAS  PubMed  Google Scholar 

  16. Wonsey DR, Follettie MT . Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 2005; 65: 5181–5189.

    Article  CAS  Google Scholar 

  17. Tan Y, Raychaudhuri P, Costa RH . Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 2007; 27: 1007–1016.

    Article  CAS  Google Scholar 

  18. Li SKM, Smith DK, Leung WY, Cheung AMS, Lam EWF, Dimri GP et al. FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 2008; 283: 16545–16553.

    Article  CAS  PubMed  Google Scholar 

  19. Tan Y, Chen Y, Yu L, Zhu H, Meng X, Huang X et al. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription. Cell Prolif 2010; 43: 494–504.

    Article  CAS  PubMed  Google Scholar 

  20. Xie Z, Tan G, Ding M, Dong D, Chen T, Meng X et al. Foxm1 transcription factor is required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic Acids Res 2010; 38: 8027–8038.

    Article  CAS  PubMed  Google Scholar 

  21. Kim I-M, Ackerson T, Ramakrishna S, Tretiakova M, Wang I-C, Kalin TV et al. The forkhead box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 2006; 66: 2153–2161.

    Article  CAS  Google Scholar 

  22. Liu M, Dai B, Kang S-H, Ban K, Huang F-J, Lang FF et al. FoxM1B Is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 2006; 66: 3593–3602.

    Article  CAS  PubMed  Google Scholar 

  23. Kalin TV, Wang I-C, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 2006; 66: 1712–1720.

    Article  CAS  PubMed  Google Scholar 

  24. Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG . FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 2002; 62: 4773–4780.

    CAS  PubMed  Google Scholar 

  25. Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH . Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 2007; 67: 8293–8300.

    Article  CAS  Google Scholar 

  26. Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D et al. Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res 2009; 69: 3501–3509.

    Article  CAS  PubMed  Google Scholar 

  27. Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS One 2009; 4: e4849.

    Article  PubMed  Google Scholar 

  28. Adami GR, Ye H . Future roles for FoxM1 inhibitors in cancer treatments. Future Oncol 2007; 3: 1–3.

    Article  PubMed  Google Scholar 

  29. Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH . Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev 2010; 36: 151–156.

    Article  CAS  Google Scholar 

  30. Chen H, Yang C, Yu L, Xie L, Hu J, Zeng L et al. Adenovirus-mediated RNA interference targeting FOXM1 transcription factor suppresses cell proliferation and tumor growth of nasopharyngeal carcinoma. J Gene Med 2012; 14: 231–240.

    Article  CAS  PubMed  Google Scholar 

  31. Bektas N, Haaf A, Veeck J, Wild PJ, Luscher-Firzlaff J, Hartmann A et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer 2008; 8: 42.

    Article  PubMed  Google Scholar 

  32. Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W . Identification of early molecular markers for breast cancer. Mol Cancer 2011; 10: 15.

    Article  CAS  PubMed  Google Scholar 

  33. Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem 2006; 281: 25167–25176.

    Article  CAS  PubMed  Google Scholar 

  34. Millour J, Constantinidou D, Stavropoulou AV, Wilson MS, Myatt SS, Kwok JM et al. FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 2010; 29: 2983–2995.

    Article  CAS  PubMed  Google Scholar 

  35. Horimoto Y, Hartman J, Millour J, Pollock S, Olmos Y, Ho KK et al. ERbeta1 represses FOXM1 expression through targeting ERalpha to control cell proliferation in breast cancer. Am J Pathol 2011; 179: 1148–1156.

    Article  CAS  PubMed  Google Scholar 

  36. Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB et al. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol 2009; 35: 57–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Tan Y, Costa RH, Kovesdi I, Reichel RR . Adenovirus-mediated increase of HNF-3 levels stimulates expression of transthyretin and sonic hedgehog, which is associated with F9 cell differentiation toward the visceral endoderm lineage. Gene Expr 2001; 9: 237–248.

    Article  CAS  PubMed  Google Scholar 

  38. Tan Y, Xie Z, Ding M, Wang Z, Yu Q, Meng L et al. Increased levels of FoxA1 transcription factor in pluripotent P19 embryonal carcinoma cells stimulate neural differentiation. Stem Cells Dev 2010; 19: 1365–1374.

    Article  CAS  PubMed  Google Scholar 

  39. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ . Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 1986; 46: 4109–4115.

    CAS  PubMed  Google Scholar 

  40. Yau C, Wang Y, Zhang Y, Foekens JA, Benz CC . Young age, increased tumor proliferation and FOXM1 expression predict early metastatic relapse only for endocrine-dependent breast cancers. Breast Cancer Res Treat 2011; 126: 803–810.

    Article  CAS  PubMed  Google Scholar 

  41. Carr JR, Park HJ, Wang Z, Kiefer MM, Raychaudhuri P . FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res 2010; 70: 5054–5063.

    Article  CAS  PubMed  Google Scholar 

  42. Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC et al. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res 2010; 8: 24–34.

    Article  CAS  PubMed  Google Scholar 

  43. Millour J, de Olano N, Horimoto Y, Monteiro LJ, Langer JK, Aligue R et al. ATM and p53 regulate FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance. Mol Cancer Ther 2011; 10: 1046–1058.

    Article  CAS  PubMed  Google Scholar 

  44. Park YY, Jung SY, Jennings NB, Rodriguez-Aguayo C, Peng G, Lee SR et al. FOXM1 mediates Dox resistance in breast cancer by enhancing DNA repair. Carcinogenesis 2012; 33: 1843–1853.

    Article  CAS  PubMed  Google Scholar 

  45. Kwok JM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EW . Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther 2008; 7: 2022–2032.

    Article  CAS  PubMed  Google Scholar 

  46. Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S . The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem 2011; 3: 725–731.

    Article  CAS  PubMed  Google Scholar 

  47. Grimm D, Kay MA . RNAi and gene therapy: a mutual attraction. Hematology Am Soc Hematol Educ Program 2007: 473–481.

    Article  Google Scholar 

  48. Hannon GJ . RNA interference. Nature 2002; 418: 244–251.

    Article  CAS  PubMed  Google Scholar 

  49. Hannon GJ, Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371–378.

    Article  CAS  PubMed  Google Scholar 

  50. Kim DH, Rossi JJ . Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007; 8: 173–184.

    Article  CAS  PubMed  Google Scholar 

  51. Wang M, Gartel AL . The suppression of FOXM1 and its targets in breast cancer xenograft tumors by siRNA. Oncotarget 2011; 2: 1218–1226.

    Article  PubMed  Google Scholar 

  52. Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S et al. FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat 2010; 122: 337–346.

    Article  CAS  PubMed  Google Scholar 

  53. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J . Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007; 6: 443–453.

    Article  CAS  PubMed  Google Scholar 

  54. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma A, Li X, Bangari DS, Mittal SK . Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143: 184–194.

    Article  CAS  PubMed  Google Scholar 

  56. Douglas JT . Adenoviral vectors for gene therapy. Mol Biotechnol 2007; 36: 71–80.

    Article  CAS  PubMed  Google Scholar 

  57. Majhen D, Ambriovic-Ristov A . Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 2006; 119: 121–133.

    Article  CAS  Google Scholar 

  58. Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H et al. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 2005; 128: 2029–2041.

    Article  CAS  PubMed  Google Scholar 

  59. Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther 2005; 12: 95–100.

    Article  CAS  PubMed  Google Scholar 

  60. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T . ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 2005; 65: 10680–10685.

    Article  CAS  PubMed  Google Scholar 

  61. Dai Y, Qiao L, Chan KW, Yang M, Ye J, Zhang R et al. Adenovirus-mediated down-regulation of X-linked inhibitor of apoptosis protein inhibits colon cancer. Mol Cancer Ther 2009; 8: 2762–2770.

    Article  CAS  PubMed  Google Scholar 

  62. Wang H, Zhao G, Liu X, Sui A, Yang K, Yao R et al. Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo. J Exp Clin Cancer Res 2010; 29: 123.

    Article  PubMed  Google Scholar 

  63. Wang TB, Huang WS, Lin WH, Shi HP, Dong WG . Inhibition of KIT RNAi mediated with adenovirus in gastrointestinal stromal tumor xenograft. World J Gastroenterol 2010; 16: 5122–5129.

    Article  CAS  PubMed  Google Scholar 

  64. Xue YJ, Xiao RH, Long DZ, Zou XF, Wang XN, Zhang GX et al. Overexpression of FoxM1 is associated with tumor progression in patients with clear cell renal cell carcinoma. J Transl Med 2012; 10: 200.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K et al. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 2008; 68: 8733–8742.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (grant number 2010DFB30300); and Natural Science Foundation of China (grant number 30871244, 81171949 to YT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Tan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Chen, H., Yu, L. et al. Inhibition of FOXM1 transcription factor suppresses cell proliferation and tumor growth of breast cancer. Cancer Gene Ther 20, 117–124 (2013). https://doi.org/10.1038/cgt.2012.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.94

Keywords

This article is cited by

Search

Quick links