Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiosensitivity by ING4–IL-24 bicistronic adenovirus-mediated gene cotransfer on human breast cancer cells

Abstract

Breast cancer is a common malignancy among women and is associated with poor 5-year survival rates. Gene radiotherapy, that is, gene therapy combined with radiotherapy, has been extensively studied as a new mode of therapy, but most studies have assessed only one gene. Here, we inserted two anti-oncogenes, ING4 (inhibitor of growth family member 4) and interleukin-24 (IL-24), in the same bicistronic adenovirus vector and explored the effect of dual-gene therapy combined with radiotherapy on breast cancer cells. Flow cytometry assays showed that adenovirus-mediated ING4 and IL-24 expression could suppress growth, promote apoptosis and induce G2/M cell-cycle arrest in MDA-MB-231 cells. Moreover, animal model studies demonstrated that the combination of ING4/IL-24 gene therapy and radiotherapy significantly suppressed cell proliferation and inhibited tumor growth (P<0.05). Mechanistically, the pro-apoptotic response likely involved the upregulation of Bax and Caspase-3 and the downregulation of Bcl-2. Thus, this study indicates that the co-expression of the two anti-oncogenes, ING4 and IL-24, could significantly promote radiotherapy sensitivity in MDA-MB-231 breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  Google Scholar 

  2. Whelan TJ, Julian J, Wright J, Jadad AR, Levine ML . Dose locoregional radiation therapy improve survival in breast cancer? A meta-analysis. J Clin Oncol 2000; 18: 1220–1229.

    Article  CAS  PubMed  Google Scholar 

  3. Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med 1997; 337: 949–955.

    CAS  PubMed  Google Scholar 

  4. Paszat LF, Mackillop WJ, Groome PA, Boyd C, Schulze K, Holowaty E . Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries. J Clin Oncol 1998; 16: 2625–2631.

    Article  CAS  PubMed  Google Scholar 

  5. Early Breast Cancer Trialists’ Collaborative Group.. Effects of radiotherapy and surgery in early breast cancer-an overview of the randomized trials. New Eng J Med 1995; 33: 1444–1455.

    Google Scholar 

  6. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  PubMed  Google Scholar 

  7. Naldini LA . Comeback for gene therapy. Science 2009; 326: 805–806.

    Article  CAS  PubMed  Google Scholar 

  8. Dutreix M, Cosset JM, Sun JS . Molecular therapy in support to radiotherapy. Mutat Res 2010; 704: 182–189.

    Article  CAS  PubMed  Google Scholar 

  9. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 2003; 63: 2373–2378.

    CAS  PubMed  Google Scholar 

  10. Zhang X, Xu LS, Wang ZQ, Wang KS, Li N, Cheng ZH et al. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett 2004; 570: 7–12.

    Article  CAS  PubMed  Google Scholar 

  11. Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J . Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett 2008; 271: 105–116.

    Article  CAS  PubMed  Google Scholar 

  12. Cai L, Li X, Zheng S, Wang Y, Wang Y, Li H et al. Inhibitor of growth 4 is involved in melanomagenesis and induces growth suppression and apoptosis in melanoma cell line M14. Melanoma Res 2009; 19: 1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Xie YF, Sheng W, Xiang J, Zhang H, Ye Z, Yang J . Adenovirus-mediated ING4 expression suppresses pancreatic carcinoma cell growth via induction of cell-cycle alteration, apoptosis, and inhibition of tumor angiogenesis. Cancer Biother Radiopharm 2009; 24: 261–269.

    Article  CAS  PubMed  Google Scholar 

  14. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D et al. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 2007; 110: 4464–4475.

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Xie Y, Sheng W, Miao J, Xiang J, Yang J . Tumor-suppressive effect of adenovirus-mediated inhibitor of growth 4 gene transfer in breast carcinoma cells in vitro and in vivo. Cancer Biother Radiopharm 2010; 25: 427–437.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  PubMed  Google Scholar 

  17. Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Lebedeva IV, Dent P et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev 2003; 14: 35–51.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher PB . Is mda-7/IL-24 a ‘magic bullet’ for cancer? Cancer Res 2005; 65: 10128–10138.

    Article  CAS  PubMed  Google Scholar 

  19. Sheng WH, Xie YF, Miao JC, Gu FB, Shan YB, Liu TL et al. The anti-tumor effect by adenovirus-mediated ING4 and IL-24 co-expression on hepatocellular carcinoma in vitro. Chin J Microbiol Immunol 2010; 30: 695–703.

    CAS  Google Scholar 

  20. Zhu Y, Lv H, Xie Y, Sheng W, Xiang J, Yang J . Enhanced tumor suppression by an ING4/IL-24 bicistronic adenovirus-mediated gene cotransfer in human non-small cell lung cancer cells. Cancer Gene Ther 2011; 18: 627–636.

    Article  CAS  PubMed  Google Scholar 

  21. Keall PJ, Lammering G, Lin PS, Winter DS, Chung TD, Mohan R et al. Tumor control probability predictions for genetic radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57: 255–263.

    Article  PubMed  Google Scholar 

  22. Zeng M, Cerniglia GJ, Eck SL, Stevens CW . High-efficiency stable gene transfer of adenovirus into mammalian cells using ionizing radiation. Hum Gene Ther 1997; 8: 1025–1032.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao YZ, Wang J, Wang Q, Mu CJ . The mechanisms of inter-effect about gene therapy and radiotherapy to tumor and the prospect of therapeutic alliance. Int J Radiat Med Nucl Med 2006; 30: 250–253.

    Google Scholar 

  24. Wilson DR . Viral-mediated gene transfer for cancer treatment. Curr Pharm Biotechnol 2002; 3: 151–164.

    Article  CAS  PubMed  Google Scholar 

  25. Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R et al. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 2004; 39: 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  26. Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M et al. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther 2000; 11: 1509–1519.

    Article  CAS  PubMed  Google Scholar 

  27. Ngoi SM, Chien AC, Lee CG . Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther 2004; 4: 15–31.

    Article  CAS  PubMed  Google Scholar 

  28. Fotedar R, Diederich L, Fotedar A . Apoptosis and the cell cycle. Prog Cell Cycle Res 1996; 2: 147–163.

    Article  CAS  PubMed  Google Scholar 

  29. Pawlik TM, Keyomarsi K . Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59: 928–942.

    Article  PubMed  Google Scholar 

  30. Danial NN, Korsmeyer SJ . Cell death: critical control points. Cell 2004; 116: 205–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current research was supported by the National Natural Science Foundation of China (No. 81001016; 81101909).

Ethical approval

Data collection was approved by the Soochow University Review Board and Ethics Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Li, Z., Sheng, W. et al. Radiosensitivity by ING4–IL-24 bicistronic adenovirus-mediated gene cotransfer on human breast cancer cells. Cancer Gene Ther 20, 38–45 (2013). https://doi.org/10.1038/cgt.2012.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.82

Keywords

This article is cited by

Search

Quick links