Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice

Abstract

Despite the tremendous potential of adenovirus (Ad) as a delivery vector for cancer gene therapy, its use in clinical settings has been limited, mainly as a result of the limited infectivity in many tumors and the wide tissue tropism associated with Ad. To modify the tropism of the virus, we have inserted the epidermal growth factor-like domain of the human heregulin-α (HRG) into the HI loop of Ad5 fiber. This insertion had no adverse effect on fiber trimerization nor did it affect incorporation of the modified fiber into infectious viral particles. Virions bearing modified fiber displayed growth characteristics and viral yields indistinguishable from those of wild-type (wt) virus. Most importantly, HRG-tagged virions showed enhanced infection of cells expressing the cognate receptors HER3/ErbB3 and HER4/ErbB4. This was significantly reduced in the presence of soluble HRG. Furthermore, HER3-expressing Chinese hamster ovary (CHO) cells were transduced by the HRG-modified virus, but not by wt virus. In contrast, CHO cells expressing the coxsackie-Ad receptor were transduced with both viruses. However, infection of an in vivo breast cancer xenograft model after intratumoral injection was similar with both viruses, suggesting that the tumor microenvironment and/or the route of delivery have important roles in infection of target cells with fiber-modified Ads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Shirakawa T . The current status of adenovirus-based cancer gene therapy. Mol Cells 2008; 25: 462–466.

    CAS  PubMed  Google Scholar 

  2. Peng Z . Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016–1027.

    CAS  PubMed  Google Scholar 

  3. Yu W, Fang H . Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7: 141–148.

    PubMed  Google Scholar 

  4. Hitt MM, Graham FL . Adenovirus vectors for human gene therapy. Adv Virus Res 2000; 55: 479–505.

    CAS  PubMed  Google Scholar 

  5. Hitt MM, Addison CL, Graham FL . Human adenovirus vectors for gene transfer into mammalian cells. Adv Pharmacol 1997; 40: 137–206.

    CAS  PubMed  Google Scholar 

  6. Meier O, Greber UF . Adenovirus endocytosis. J Gene Med 2004; 6 (Suppl 1): S152–S163.

    PubMed  Google Scholar 

  7. Louis N, Fender P, Barge A, Kitts P, Chroboczek J . Cell-binding domain of adenovirus serotype 2 fiber. J Virol 1994; 68: 4104–4106.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  9. Bergelson JM . Receptors mediating adenovirus attachment and internalization. Biochem Pharmacol 1999; 57: 975–979.

    CAS  PubMed  Google Scholar 

  10. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Law LK, Davidson BL . What does it take to bind CAR? Mol Ther 2005; 12: 599–609.

    CAS  PubMed  Google Scholar 

  12. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  13. Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR . Integrin alpha v beta 5 promotes adenovirus mediated cell membrane premeablilization. J Cell Biol 1994; 127: 257–264.

    CAS  PubMed  Google Scholar 

  14. Bai M, Harfe B, Freimuth P . Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base abolish its cell-rounding activity and delay virus production in flat cells. J Virol 1993; 67: 5198–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bai M, Campisi L, Freimuth P . Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2. J Virol 1994; 68: 5925–5932.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coyne CB, Bergelson JM . CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 2005; 57: 869–882.

    CAS  PubMed  Google Scholar 

  17. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    CAS  PubMed  Google Scholar 

  18. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998; 58: 5738–5748.

    CAS  PubMed  Google Scholar 

  19. Li D, Duan L, Freimuth P, O’Malley BW . Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res 1999; 5: 4175–4181.

    CAS  PubMed  Google Scholar 

  20. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP et al. Loss of adenovirus receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–330.

    CAS  PubMed  Google Scholar 

  21. Hemmi Y, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–2373.

    CAS  PubMed  Google Scholar 

  22. Haviv YS, Blackwell JL, Kanerva A, Nagi P, Krasnykh V, Dmitriev I et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res 2002; 62: 4273–4281.

    CAS  PubMed  Google Scholar 

  23. Pandha HS, Stockwin LH, Eaton J, Clarke IA, Dalgleish AG, Todryk SM et al. Coxsackie B and adenovirus receptor, integrin and major histocompatibility complex class I expression in human prostate cancer cell lines: implications for gene therapy strategies. Prostate Cancer Prostatic Dis 2003; 6: 6–11.

    CAS  PubMed  Google Scholar 

  24. Krasnykh VN, Douglas JT, van Beusechem VW . Genetic targeting of adenovirus vectors. Mol Ther 2000; 1: 391–405.

    CAS  PubMed  Google Scholar 

  25. Campos SK, Barry MA . Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7: 189–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Devaux C, Adrian M, Berthet-Colominas C, Cusacks S, Jacrot B . Structure of adenovirus fiber. I. Analysis of crystals of fiber from adenovirus serotypoes 2 and 5 by electron microscopy and X-ray crystalography. J Mol Biol 1990; 215: 567–588.

    CAS  PubMed  Google Scholar 

  27. Novelli A, Boulanger PA . Deletion analysis of functional domains in baculovirus-expressed adenovirus type 2 fiber. Virology 1991; 185: 365–376.

    CAS  PubMed  Google Scholar 

  28. Xia D, Henry LJ, Gerard RD, Deisenhofer J . Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 1994; 2: 1259–1270.

    Article  CAS  PubMed  Google Scholar 

  29. van Raaij MJ, Mitraki A, Lavigne G, Cusack S . A triple β-spiral in the adenovirus fiber shaft reveals a new structural motif for a fibrous protein. Nature 1999; 401: 935–938.

    CAS  PubMed  Google Scholar 

  30. Henry LJ, Xia D, Wilke ME, Deisenhofer J, Gerard RD . Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 1994; 68: 5239–5246.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT . Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998; 72: 1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicklin SA, Von Seggern DJ, Work LM, Pek DC, Dominiczak AF, Nemerow GR et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther 2001; 4: 534–542.

    CAS  PubMed  Google Scholar 

  34. Einfeld DA, Brough DE, Roelvink PW, Kovesdi I, Wickham TJ . Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J Virol 1999; 73: 9130–9136.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Piao Y, Jiang H, Alemany R, Krasnykh V, Marini FC, Xu J et al. Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity. Cancer Gene Ther 2009; 16: 256–265.

    CAS  PubMed  Google Scholar 

  36. Kurachi S, Tashiro K, Sakurai F, Sakurai H, Kawabata K, Yayama K et al. Fiber-modified adenovirus vectors containing the TAT peptide derived from HIV-1 in the fiber knob have efficient gene transfer activity. Gene Therapy 2007; 14: 1160–1165.

    CAS  PubMed  Google Scholar 

  37. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V . Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002; 76: 8621–8631.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW et al. Identification of heregulin, a specific activator of p185erbB2. Science 1992; 256: 1205–1210.

    CAS  PubMed  Google Scholar 

  39. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG et al. Isolation of neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 1992; 69: 205–216.

    CAS  PubMed  Google Scholar 

  40. Kita Y, Mayer J, Zamborelli T, Hara S, Rohde M, Watson E et al. Bioactive synthetic peptide of NDF/heregulin. Biochem Biophys Res Commun 1995; 210: 441–451.

    CAS  PubMed  Google Scholar 

  41. Singer E, Landgraf R, Horan T, Slamon D, Eisenberg D . Identification of a heregulin binding site in HER3 extracellular domain. J Biol Chem 2001; 276: 44266–44274.

    CAS  PubMed  Google Scholar 

  42. Sliwkowski MX, Schaefer G, Akita RW, Lofgren JA, Fitzpatrick VD, Nuijens A et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 1994; 269: 14661–14665.

    CAS  PubMed  Google Scholar 

  43. Plowman GD, Green JM, Culouscou JM, Carlton GW, Rothwell VM, Buckley S . Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 1993; 366: 473–475.

    CAS  PubMed  Google Scholar 

  44. Carraway KL, Cantley LC . A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 1994; 78: 5–8.

    CAS  PubMed  Google Scholar 

  45. Carraway KL, Sliwkowski MX, Akita R, Platko JV, Guy PM, Nuijens A et al. The erbB3 gene product is a receptor for heregulin. J Biol Chem 1994; 269: 14303–14306.

    CAS  PubMed  Google Scholar 

  46. Kita YA, Barff J, Luo Y, Wen D, Brankow D, Hu S et al. NDF/heregulin stimulates the phosphorylation of Her3/erbB3. FEBS Lett 1994; 349: 139–143.

    CAS  PubMed  Google Scholar 

  47. Barbacci EG, Guarino BC, Stroh JG, Singleton DH, Rosnack KJ, Moyer JD et al. The structural basis for the specificity of epidermal growth factor and heregulin binding. J Biol Chem 1995; 270: 9585–9589.

    CAS  PubMed  Google Scholar 

  48. Jacobsen NE, Abadi N, Sliwkowski MX, Reilly D, Skelton NJ, Fairbrother WJ . High-resolution solution structure of the EGF-like domain of heregulin- alpha. Biochemistry 1996; 35: 3402–3417.

    CAS  PubMed  Google Scholar 

  49. Nagata K, Kohda D, Hatanaka H, Ichikawa S, Matsuda S, Yamamoto T et al. Solution structure of the epidermal growth factor-like domain of heregulin-alpha, a ligand for p180erbB-4. EMBO J 1994; 13: 3517–3523.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lemoine NR, Barnes DM, Hollywood DP, Hughes CM, Smith P, Dublin E et al. Expression of the ERBB3 gene product in breast cancer. Br J Cancer 1992; 66: 1116–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gullick WJ . The c-erbB3/HER3 receptor in human cancer. Cancer Surv 1996; 27: 339–349.

    CAS  PubMed  Google Scholar 

  52. Holbro T, Civenni G, Hynes NE . The erbB receptors and thier role in cancer progression. Exp Cell Res 2003; 284: 99–110.

    CAS  PubMed  Google Scholar 

  53. Sithanandam G, Anderson LM . The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 2008; 15: 413–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Uberall I, Kolar Z, Trojanec R, Berkovcova J, Hajduch M . The status and role of ErbB receptors in human cancer. Exp Mol Pathol 2008; 84: 79–89.

    CAS  PubMed  Google Scholar 

  55. Han X, Kasahara N, Wai Kan Y . Ligand-directed retroviral targeting of human breast cancer cells. Proc Natl Acad Sci USA 1995; 92: 9747–9751.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Addison CL, Braciak T, Ralston R, Muller WJ, Gauldie J, Graham FL . Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model. Proc Natl Acad Sci USA 1995; 92: 8522–8526.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    CAS  PubMed  Google Scholar 

  58. Chen L, Anton M, Graham FL . Production and characterization of human 293 cell lines expressing the site-specific recombinase Cre. Somat Cell Mol Genet 1996; 22: 477–488.

    CAS  PubMed  Google Scholar 

  59. Stemmer WPC, Crameri A, Ha KD, Brennan TM, Heyneker HL . Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 1995; 164: 49–53.

    CAS  PubMed  Google Scholar 

  60. Hitt MM, Ng P, GF. L . Construction and propagation of human adenovirus vectors. In: Celis JE, (ed.) Cell Biology: A Laboratory Handbook 3rd edn. vol. 1. Academic Press: San Diego, CA, 2006 pp 435–443.

    Google Scholar 

  61. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL . A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maizel JV, White D, Scharff MD . The polypeptides of adenovirus. I. Evidence of multiple protein components in the virion and a comparison of types 2, 7a, and 12. Virology 1968; 36: 115–125.

    CAS  PubMed  Google Scholar 

  63. Falcone D, Andrews DW . Both the 5′ untranslated region and the sequence surrounding the start site contribute to efficient initiation of translation in vitro. Mol Cell Biol 1991; 11: 2656–2664.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    CAS  PubMed  Google Scholar 

  65. Graham FL . Covalently closed circles of human adenovirus DNA are infectious. EMBO J 1984; 3: 2917–2922.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL . An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther 2000; 11: 693–699.

    CAS  PubMed  Google Scholar 

  67. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000; 74: 6875–6884.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP . Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62: 609–616.

    CAS  PubMed  Google Scholar 

  69. Li Y, Yao XM, Hong-Brown L, Massa SM . Adaptable modification of adenoviral tropism using a bifunctional ligand protein. Virus Res 2003; 91: 223–230.

    CAS  PubMed  Google Scholar 

  70. Wickham TJ, Segal DM, Roelvink PW, Carrion ME, Lizonova A, Lee GM et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol 1996; 70: 6831–6838.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther 2001; 8: 730–735.

    CAS  PubMed  Google Scholar 

  73. Xia H, Anderson B, Mao Q, Davidson BL . Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 2000; 74: 11359–11366.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P . RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999; 73: 5156–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wickham TJ, Tzeng E, Shears LL, Roelvink PW, Li Y, Lee GM et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zakhartchouk A, Connors W, van Kessel A, Tikoo SK . Bovine adenovirus type 3 containing heterologous protein in the C-terminus of minor capsid protein IX. Virology 2004; 320: 291–300.

    CAS  PubMed  Google Scholar 

  77. Poulin KL, Lanthier RM, Smith AC, Christou C, Risco Quiroz M, Powell KL et al. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX. J Virol 84: 10074–10086.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol 1996; 14: 1570–1573.

    CAS  PubMed  Google Scholar 

  79. Parrott MB, Adams KE, Mercier GT, Mok H, Campos SK, Barry MA . Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification. Mol Ther 2003; 8: 688–700.

    CAS  PubMed  Google Scholar 

  80. Charles YC, Patricia M, Glen RN, Phoebe LS . Structure of adenovirus complexed with its internalization receptor, v5 integrin. J Virol 1999; 73: 6759–6768.

    Google Scholar 

  81. Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B et al. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J 1997; 16: 1189–1198.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Landgraf R, Pegram M, Slamon DJ, Eisenberg D . Cytotoxicity and specificity of directed toxins composed of dephtheria toxin and the EGF-like domain of heregulin β1. Biochemistry 1998; 37: 3220–3228.

    CAS  PubMed  Google Scholar 

  83. Leguchi K, Fujita M, Ma Z, Davari P, Taniguchi Y, Sekiguchi K et al. Direct binding of the EGF-like domain of neuregulin-1 to integrins ({alpha}v{beta}3 and {alpha}6{beta}4) is involved in neuregulin-1/ErbB signaling. J Biol Chem 2010; 285: 31388–31398.

    Google Scholar 

  84. Landgraf R, Eisenberg D . Heregulin reverses the oligomerization of HER3. Biochemistry 2000; 39: 8503–8511.

    CAS  PubMed  Google Scholar 

  85. Puumalainen AM, Vapalahti M, Agrawal RS, Kossila M, Laukkanen J, Lehtolainen P et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther 1998; 9: 1769–1774.

    CAS  PubMed  Google Scholar 

  86. Steffensen KD, Waldstrom M, Andersen RF, Olsen DA, Jeppesen U, Knudsen HJ et al. Protein levels and gene expressions of the epidermal growth factor receptors, HER1, HER2, HER3 and HER4 in benign and malignant ovarian tumors. Int J Oncol 2008; 33: 195–204.

    CAS  PubMed  Google Scholar 

  87. Matthews KS, Alvarez RD, Curiel DT . Advancements in adenoviral based virotherapy for ovarian cancer. Adv Drug Deliv Rev 2009; 61: 836–841.

    CAS  PubMed  Google Scholar 

  88. Kirn D . Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results of phase I and II trials. Expert Opin Biol Ther 2001; 1: 525–538.

    CAS  PubMed  Google Scholar 

  89. Raki M, Sarkioja M, Desmond RA, Chen DT, Butzow R, Hemminki A et al. Oncolytic adenovirus Ad5/3-delta24 and chemotherapy for treatment of orthotopic ovarian cancer. Gynecol Oncol 2008; 108: 166–172.

    CAS  PubMed  Google Scholar 

  90. Rein DT, Volkmer A, Beyer IM, Curiel DT, Janni W, Dragoi A et al. Treatment of chemotherapy resistant ovarian cancer with a MDR1 targeted oncolytic adenovirus. Gynecol Oncol 2011; 123: 138–146.

    CAS  PubMed  Google Scholar 

  91. Rein DT, Breidenbach M, Curiel DT . Current developments in adenovirus-based cancer gene therapy. Fut Oncol 2006; 2: 137–143.

    CAS  Google Scholar 

  92. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ . Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    CAS  PubMed  Google Scholar 

  93. Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T . Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation. J Virol 2003; 77: 13062–13072.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr J Bergelson and Dr Z Wang for providing cell lines. ME was recipient of a post-doctoral fellowship from the Canadian Institutes of Health Research. SM was supported by the Dr Herbert Meltzer Fellowship, the Alberta Cancer Legacy Graduate Studentship and the Queen Elizabeth II Graduate Scholarship—Master’s Level. GB was recipient of a post-doctoral fellowship from Fondazione Italiana per la Ricerca sul Cancro. AP was supported by the Alberta Cancer Research Institute. FG was supported by grants from the National Cancer Institute of Canada, Merck Research Laboratories and the Canadian Vaccine Network. MH was supported by funding from the Canadian Breast Cancer Research Alliance, the Canadian Breast Cancer Foundation and the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Hitt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLeod, S., Elgadi, M., Bossi, G. et al. HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. Cancer Gene Ther 19, 888–898 (2012). https://doi.org/10.1038/cgt.2012.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.79

Keywords

This article is cited by

Search

Quick links