Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC

Abstract

The aim of this study was to evaluate the efficacy of the chemokine CCL19 (ELC) as an adjuvant for intradermal gene gun delivery of Her2/neu DNA and to investigate the role of B cells in CCL19-mediated enhancement of immune responses. Balb/c mice were immunized intramuscularly (i.m.) on days 1 and 15 with plasmid DNA (pDNA) (100 μg DNA) or intradermally (i.d.) by gene gun delivery (1–2 μg DNA). Administration of pDNA encoding Her2/neu (pDNA(Her2/neu) was compared with pDNA(Her2/neu) plus pDNA(CCL19), pDNA(CCL19), mock vector or uncoated gold particles/phosphate-buffered saline (PBS). Tumor challenge was performed subcutaneously on day 25 with syngeneic Her2/neu+ tumor cells (D2F2/E2). Intradermal immunization by gene gun led to an enhancement of tumor protection by the DNA vaccine as compared with i.m. immunization. The protective effect of the vaccine was further enhanced by coadministration of pDNA(CCL19) both after i.m. and i.d. immunization. Tumor protection was associated with Her2/neu-specific T cell and humoral immune responses. Experiments in B-cell-deficient μMT mice showed that B cells are crucial for CCL19-mediated enhancement of tumor rejection, most likely as antigen-presenting B cells. DNA vaccines against Her2/neu may play a future role in the treatment of Her2/neu-positive breast cancer patients in a clinical situation of minimal residual disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  2. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA . DNA vaccines. Annu Rev Immunol 1997; 15: 617–648.

    Article  CAS  PubMed  Google Scholar 

  3. Tuting T, Storkus WJ, Falo LD . DNA immunization targeting the skin: molecular control of adaptive immunity. J Invest Dermatol 1998; 111: 183–188.

    Article  CAS  PubMed  Google Scholar 

  4. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD . DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 122–1128.

    Article  Google Scholar 

  5. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN . Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Torres CA, Iwasaki A, Barber BH, Robinson HL . Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J Immunol 1997; 158: 4529–4532.

    CAS  PubMed  Google Scholar 

  7. Banchereaux J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  Google Scholar 

  8. Gurunathan S, Klinman DM, Seder RA . DNA vaccines: immunology, application and optimization. Ann Rev Immunol 2000; 18: 927–974.

    Article  CAS  Google Scholar 

  9. Prud’homme G . DNA vaccination against tumors. J Gene Med 2005; 7: 3–17.

    Article  PubMed  Google Scholar 

  10. Rice J, Ottensmeier CH, Stevenson FK . DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8: 108–120.

    Article  CAS  PubMed  Google Scholar 

  11. Babiuk LA, Pontarollo R, Babiuk S, Loehr B, van Drunen-Littel-van den Hurk S . Induction of immune responses by DNA vaccines in large animals. Vaccine 2003; 21: 649–658.

    Article  CAS  PubMed  Google Scholar 

  12. Steinhagen F, Kinjo T, Bode C, Klinman DM . TLR-based immune adjuvants. Vaccine 2011; 29: 3341–3351.

    Article  CAS  PubMed  Google Scholar 

  13. Scheerlinck JP . Genetic adjuvants for DNA vaccines. Vaccine 2001; 19: 2647–2656.

    Article  CAS  PubMed  Google Scholar 

  14. Greenland JR, Letvin NL . Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007; 25: 3731–3741.

    Article  CAS  PubMed  Google Scholar 

  15. DellÁgnola C, Biragyn A . Clinical utilisation of chemokines to combat cancer: the double-edged sword. Exp Rev Vaccines 2007; 6: 267–283.

    Article  Google Scholar 

  16. Coscia M, Biragyn A . Cancer immunotherapy with chemoattractant peptides. Sem Cancer Biol 2004; 14: 209–218.

    Article  CAS  Google Scholar 

  17. Stewart TJ, Smyth MJ . Chemokine-chemokine receptors in cancer immunotherapy. Immunotherapy 2009; 1: 109–127.

    Article  CAS  PubMed  Google Scholar 

  18. Viola A, Contento RL, Molon B . T cells and their partners: the chemokine dating agency. Trends Immunol 2006; 27: 421–427.

    Article  CAS  PubMed  Google Scholar 

  19. Bromley SK, Mempel TR, Luster AD . Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008; 9: 970–980.

    Article  CAS  PubMed  Google Scholar 

  20. Förster R, Davalos-Misslitz AC, Rot A . CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008; 8: 362–371.

    Article  PubMed  Google Scholar 

  21. Radstake TRR, van der Voort M, ten Brummelhuis M, de Waal Malefijt M, Looman CG, Figdor CG et al. Increased expression of CCL18, CCL19 and CCL17 by dendritic cells from patients with rheumatoid arthritis, and regulation by Fc gamma receptors. Ann Rheum Dis 2005; 64: 359–367.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen-Hoai T, Baldenhofer G, Sayed Ahmed M, Pham-Duc M, Gries M, Lipp M et al. CCL19 (ELC) improves TH1-polarized immune responses and protective immunity in a murine Her2/neu DNA vaccination model. J Gene Med 2012; 14: 128–137.

    Article  CAS  PubMed  Google Scholar 

  23. Sobol RE . The rationale for prophylactic cancer vaccines and need for a paradigm shift. Cancer Gene Ther 2006; 13: 725–731.

    Article  CAS  PubMed  Google Scholar 

  24. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K et al. Peptides derived from a wild-type murine proto-oncogenec-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 1997; 159: 1336–1343.

    CAS  PubMed  Google Scholar 

  25. Piechoski MP, Pilon SA, Wei WZ . Quantitative measurement of anti—ErbB-2 antibody by flow cytometry and Elisa. J Immunol Meth 2002; 259: 33–42.

    Article  Google Scholar 

  26. Nguyen-Hoai T, Baldenhofer G, Sayed Ahmed MS, Pham-Duc M, Vu MD, Lipp M et al. CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model. Cancer Gene Ther 2012; 19: 69–76.

    Article  CAS  PubMed  Google Scholar 

  27. Lindencrona JA, Preise S, Kammertöns T, Schüler T, Piechocki M, Wei WZ et al. CD4+ T cell-mediated Her-2/neu-specific tumor rejection in the absence of B cells. Int J Cancer 2004; 109: 259–264.

    Article  CAS  PubMed  Google Scholar 

  28. Wei WZ, Shi WP, Galy A, Lichlyter D, Hernandez S, Groner B et al. Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 1999; 81: 748–754.

    Article  CAS  PubMed  Google Scholar 

  29. Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, Kono K et al. Cellular immunity to the Her-2/neu protooncogene. Adv Cancer Res 2002; 85: 101–144.

    Article  CAS  PubMed  Google Scholar 

  30. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CM . Vaccination for the treatment and prevention of cancer in animal models. Adv Immunol 2006; 90: 175–213.

    Article  CAS  PubMed  Google Scholar 

  31. Corr M, Lee DJ, Carson DA, Tighe H . Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 1996; 184: 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  32. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P . Langerhans cells: dendritic cells of the epidermis. APMIS 2003; 111: 725–740.

    Article  CAS  PubMed  Google Scholar 

  33. Bauer J, Bahmer FA, Worl J, Neuhuber W, Schuler G, Fartasch M . A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin: a stereologic study using the optical dissector method and the confocal laser scanning microscope. J Invest Dermatol 2001; 116: 313–318.

    Article  CAS  PubMed  Google Scholar 

  34. Bergstresser PR, Fletcher CR, Streilein JW . Surface densities of Langerhans cells in relation to rodent epidermal sites with special immunologic properties. J Invest Dermatol 1980; 74: 77–80.

    Article  CAS  PubMed  Google Scholar 

  35. Lenz A, Heine M, Schuler G, Romani N . Human and murine dermis contain dendritic cells: isolation by means of a novelmethod and phenotypical and functional characterization. J Invest Dermatol 1993; 92: 2587–2596.

    CAS  Google Scholar 

  36. Lin MT, Pulkkinen L, Uitto J, Yoon K . The gene gun: current applications in cutaneous gene therapy. Int J Dermatol 2000; 39: 161–170.

    Article  CAS  PubMed  Google Scholar 

  37. Garg S, Oran A, Wajchman J, Sasaki S, Maris CH, Kapp JA et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nat Immunol 2003; 4: 907–912.

    Article  CAS  PubMed  Google Scholar 

  38. Larregina AT, Watkins SC, Erdos G, Spencer LA, Storkus WJ, Beer-Stolz D et al. Direct transfection and activation of human cutaneous dendritic cells. Gene Ther 2001; 8: 608–617.

    Article  CAS  PubMed  Google Scholar 

  39. Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH et al. The CC chemokine CKb- 11/MIP-3b/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 2000; 164: 4025–4031.

    Article  CAS  PubMed  Google Scholar 

  40. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry ML et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 2011; 117: 1196–1204.

    Article  CAS  PubMed  Google Scholar 

  41. Malyguine AM, Strobl SL, Shurin MR . Immunological monitoring of the tumor immunoenvironment for clinical trials. Cancer Immunol Immunother 2012; 61: 239–247.

    Article  CAS  PubMed  Google Scholar 

  42. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H . The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998; 12: 2357–2367.

    Article  Google Scholar 

  43. Foy TM, Bannink J, Sutherland RA, McNeill PD, Moulton GG, Smith J et al. Vaccination with Her2/neu DNA or protein subunits protects against growth of a Her2/neu-expressing murine tumor. Vaccine 2001; 19: 2598–2606.

    Article  CAS  PubMed  Google Scholar 

  44. Curcio C, Di Carlo E, Clynes R, Smyth MJ, Boggio K, Quaglino E et al. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her2/neu carcinomas. J Clin Invest 2003; 111: 1161–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crawford A, Macleod M, Schumacher T, Corlett L, Gray D . Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol 2006; 176: 3498–3506.

    Article  CAS  PubMed  Google Scholar 

  46. Hon H, Oran A, Brocker T, Jacob J . B lymphocytes participate in cross-presentation of antigen following gene gun immunization. J Immunol 2005; 174: 5233–5242.

    Article  CAS  PubMed  Google Scholar 

  47. Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y . Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 2001; 13: 1583–1593.

    Article  CAS  PubMed  Google Scholar 

  48. Zanetti M, Castiglioni P, Rizzi M, Wheeler M, Gerloni M . B lymphocytes as antigen-presenting cell-based genetic vaccines. Immunol Rev 2004; 199: 264–278.

    Article  CAS  PubMed  Google Scholar 

  49. Nagafuchi S . The role of B cells in regulating the magnitude of immune response. Microbiol Immunol 2010; 54: 487–490.

    Article  CAS  PubMed  Google Scholar 

  50. Heit A, Huster KM, Schmitz F, Schiemann M, Busch DH, Wagner H . CpG-DNA aided cross-priming by cross-presenting B cells. J Immunol 2004; 172: 1501–1507.

    Article  CAS  PubMed  Google Scholar 

  51. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Förster R et al. Balanced responsiveness to chemoattractants from adjacent zones determines B cell position. Nature 2002; 416: 94–99.

    Article  PubMed  Google Scholar 

  52. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with T helper cells. PLOS Biol 2005; 3: e150.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Moulin V, Andris F, Thielemans K, Maliszewski C, Urbain J, Moser M . B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin-12 production by DC from B cell-deficient mice result in T helper cell type 1 deviation. J Exp Med 2000; 192: 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stockinger B, Zal T, Zal A, Gray D . B cells solicit their own help from T cells. J Exp Med 1996; 183: 891–899.

    Article  CAS  PubMed  Google Scholar 

  55. Watt V, Ronchese F, Ritchie D . Resting B cells suppress tumor immunity via an MHC class-II dependent mechanism. J Immunother 2007; 30: 323–332.

    Article  CAS  PubMed  Google Scholar 

  56. Qin Z, Richter G, Schüler T, Ibe S, Cao X, Blankenstein T . B cells inhibit induction of T cell dependent tumor immunity. Nat Med 1998; 4: 627–630.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Margarete Gries, Susanne Diescher and Sandra Kühn for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Westermann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Hoai, T., Hohn, O., Vu, M. et al. CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC. Cancer Gene Ther 19, 880–887 (2012). https://doi.org/10.1038/cgt.2012.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.78

Keywords

This article is cited by

Search

Quick links