Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of silencing PARG in human colon carcinoma LoVo cells on the ability of HUVEC migration and proliferation

A Corrigendum to this article was published on 18 December 2013

Abstract

Our aim was to investigate the influence of silencing poly-(ADP-ribose)glycohydrolase (PARG) in human colon carcinoma LoVo cells on the ability of human umbilical vein endothelial cell (HUVEC) migration, proliferation and its possible mechanisms. PARG mRNA expression was detected by reverse transcriptase (RT) and real-time-PCR. PARG, poly-(ADP-ribose)polymerase (PARP), p38, p-p38, extracellular signal-regulated kinase (ERK), p-ERK, nuclear factor (NF)-κB, phosphorylated IκBα (p-IκBα), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), intercellular cell adhesion molecule (ICAM)-1 and matrix metalloproteinases (MMP)-9 expressions were detected by western blot. The influence of PARG-short hairpin (sh)RNA on the ability of HUVEC migration and proliferation were observed by transwell migration and Counting Kit-8 (CCK-8) assay. Both RT-PCR and western blot results showed that the expression of PARG in PARG-shRNA cells was decreased and expressions of PARP, p38, p-p38, ERK, p-ERK, NF-κB, p-IκBα, VEGF, b-FGF, ICAM-1 and MMP-9 in those cells were lower than that in the untransfected and control-shRNA groups (P<0.05). Migration assay showed that migratory inhibition rate for HUVEC was decreased (55.23%) in cocultured PARG-shRNA cells; moreover, CCK-8 assay showed that the proliferation of HUVECs cultured with the supernatant of PARG-shRNA cells was also comparatively lower. Hence, concluding that PARG silencing could inhibit the ability of HUVEC migration and proliferation by downregulating the activity of NF-κB in LoVo cells that in turn decreases angiogenic factors such as VEGF, b-FGF, ICAM-1, MMP-9, as well as phosphorylation of p38 and ERK.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK . Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 2004; 297: 521–532.

    Article  CAS  Google Scholar 

  2. Erdélyi K, Bai P, Kovács I, Szabó E, Mocsár G, Kakuk A et al. Dual role of poly-(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively strssed A 549 cells. FASEB J 2009; 23: 3553–3563.

    Article  Google Scholar 

  3. Formentini L, Arapistas P, Pittelli M, Jacomelli M, Pitozzi V, Menichetti S et al. Mono-galloyl glucose derivatives are potent poly(ADP-ribose) glycohydrolase(PARG) inhibitors and partially reduce PARP-1-dependent cell death. Br J Pharmacol 2008; 155: 1235–1249.

    Article  CAS  Google Scholar 

  4. Lin L, Li J, Wang Y-l, Lin X . Relationship of PARG with PARP, VEGF and b-FGF in Colorectal Carcinoma. Chin J Cancer Res 2009; 21: 135–141.

    Article  CAS  Google Scholar 

  5. Johansson N, Ala-aho R, Uitto V, Grénman R, Fusenig NE, López-Otín C et al. Expression of collagenase/3 (MMP/13) and collagenase/1 (MMP/1) by transformed keratinocytes is dependent on the activity of p38 mitogen/activated protein kinase. J Cell Sci 2000; 113: 227–235.

    CAS  PubMed  Google Scholar 

  6. Herrera R . Modulation of hepatocyte growth factor induced scattering of HT29 colon carcinoma cells Involvement of the MAPK pathway. Cancer Res 2001; 61: 383–391.

    Google Scholar 

  7. Harris VK, Coticchia CM, Kagan BL, Ahmad S, Wellstein A, Riegel AT . Induction of the angiogenic modulator fibroblast growth factor binding protein by epidermal growth factor is mediated through both MEK/ERK and P38 signal transduction pathway. J Biol Chem 2000; 275: 10802–10811.

    Article  CAS  Google Scholar 

  8. Pyriochou A, Olah G, Deitch EA, Szabó C, Papapetropoulos A . Inhibition of angiogenesis by the poly (ADP-ribose) polymerase inhibitor PJ-34. IJMM 2008; 22: 113–118.

    CAS  Google Scholar 

  9. Mester L, Szabo A, Atlasz T, Szabadfi K, Reglodi D, Kiss P . Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 2009; 16: 68–76.

    Article  CAS  Google Scholar 

  10. Ho JQ, Asagiri M, Hoffmann A, Gosh G . NF-κB potentiates caspase independent hydrogen peroxide induced cell death. PloS One 2011; 6: e16815.

    Article  CAS  Google Scholar 

  11. Veres B, Radnai B, Gallyas F, Varbiro G, Berente Z, Osz E et al. Regulation of kinase cascades and transcription factors by a Poly (ADP-ribose) polymerase-1 inhibitor, 4-Hydroxyquinazoline, in lipopolysaccharide-induced inflammation in mice. JPET 2004; 310: 247–255.

    Article  CAS  Google Scholar 

  12. Cai L, Wang YL, Lin X . Effect of PARP inhibitor 5-AIQ on PARP/NF-KB complex and NF-KB activity in murine colon carcinoma CT26 cells. Basic Clin Med 2008; 28: 1156–1159.

    Google Scholar 

  13. Moon SJ, Park MK, Oh HJ, Lee SY, Kwok SK, Cho ML et al. Engagement of toll-like receptor 3 induces vascular endothelial growth factor and interleukin-8 in human rheumatoid synovial fibroblasts. Korean J Intern Med 2010; 25: 429–435.

    Article  CAS  Google Scholar 

  14. Shibata A, Nagaya T, Imai T, Funahashi H, Nakao A, Seo H . Inhibition of NF-kappaB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat 2002; 73: 237–243.

    Article  CAS  Google Scholar 

  15. Xiong HQ, Abbruzzese JL, Lin E, Wang L, Zheng L, Xie K . NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer 2004; 108: 181–188.

    Article  CAS  Google Scholar 

  16. Fujioka S, Sclabas GM, Schmidt C, Niu J, Frederick WA, Dong QG et al. Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 2003; 22: 1365–1370.

    Article  CAS  Google Scholar 

  17. Valera FC, Queiroz R, Scrideli C, Tone LG, Anselmo-Lima WT . Expression of transcription factors NF-κB and AP-1 in nasal polyposis. Clin Exp Allergy 2008; 38: 579–585.

    Article  CAS  Google Scholar 

  18. Pandey MK, Sandur SK, Sung B . Butein a tetrahydtoxychalcone, inhibits nuclear factor (NF)-κB and NF-κB-regulated gene expression through direct inhibition of IB kinase on cysteine179 residue. J Biol Chem 2007; 282: 17340–17350.

    Article  CAS  Google Scholar 

  19. Tong JS, Zhang QH, Wang ZB, Li S, Yang CR, Fu XQ et al. ER-α36, a novel variant of ER-α, mediates estrogen-stimulated proliferation of endometrial carcinoma cells via the PKCδ/ERK pathway. Plos One 2010; 5: e15408.

    Article  Google Scholar 

  20. Ok SH, Jeong YS, Kim JG, Lee SM, Sung HJ, Kim HJ et al. C-Jun NH2-terminal kinase contributes to dexmedetomidine-induced contraction in isolated rat aortic smooth muscle. Yonsei Med J 2011; 52: 420–428.

    Article  CAS  Google Scholar 

  21. Su J, Ruan XC, Zhang YH, She SZ, Xu LX . Effects of morphine and pethidine on the expression of P-glycoprotein in mouse brain microvascular endothelial cells. Nan Fang Yi Ke Da Xue Xue Bao 2010; 30: 1824–1826.

    CAS  PubMed  Google Scholar 

  22. Sanda T, Kuwano T, Nakao S, Iida S, Ishida T, Komatsu H et al. Antimyeloma effects of a novel synthetic retinoid Am80 (Tamibarotene) through inhibition of angiogenesis. Leukemia 2005; 19: 901–909.

    Article  CAS  Google Scholar 

  23. Yang LP, Cheng P, Peng XC, Shi HS, He WH, Cui FY et al. Anti-tumor effect of adenovirus-mediated gene transfer of pigment transfer of pigment epithelium-derived factor on mouse B16-F10 melanoma. J Exp Clin Cancer Res 2009; 28: 75.

    Article  CAS  Google Scholar 

  24. Luo W, Zhang H, Xu M . Lentiviral vector- a new potential carrier about transgenosis. Jiangsu Pharm Clin Res 2006; 14: 366–370.

    Google Scholar 

  25. Min W, Wang ZQ . Poly-(ADP-ribose)glycohydrolase and its therapeutic potential. Front Biosci 2009; 1: 1619–1626.

    Article  Google Scholar 

  26. Meyer RG, Meyer-Ficca ML, Jacobson EL, Jacobson MK . Human poly(ADP-ribose)glycohydrolase(PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23(TIM23). Gene 2003; 314: 181–190.

    Article  CAS  Google Scholar 

  27. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC et al. Failure to degrade poly(ADP-ribose) increased sensitivity to cytotoxicity and early embryonic lethality. PNAS 2004; 101: 17699–17704.

    Article  CAS  Google Scholar 

  28. Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG, Petrilli V et al. Depletion of the 110-Kilodalton isoform of poly(ADP-ribose)glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. MCB 2004; 24: 7163–7178.

    Article  CAS  Google Scholar 

  29. Poitras MF, Koh DW, Yu SW, Andrabi SA, Mandir AS, Poirier GG et al. Spatial and functional relationship between poly(ADP-ribose)polymerase-1 and Poly(ADP-ribose)glycohydrolase in the brain. Neuroscience 2007; 148: 198–211.

    Article  CAS  Google Scholar 

  30. Miwa M, Matsutani M . PolyADP-ribosylation and cancer. Cancer Sci 2007; 98: 1528–1535.

    Article  CAS  Google Scholar 

  31. Frizzell KM, Gamble MJ, Berrocal JG, Zhang T, Krishnakumar R, Cen Y et al. Global analysis of transcriptional regulation by Poly-(ADP-ribose)polymerase-1 and poly-(ADP-ribose)glycohydrolase in MCF-7 human breast cancer cells. J Biol Chem 2009; 284: 33926–33938.

    Article  CAS  Google Scholar 

  32. Li QZ, Wang YL, Li X . Lentivirus PARG-shRNA transfection decreases colon carcinoma lovo cells matrix adhesion, migration and invasion potencies. Basic Clin Med 2010; 30: 237–241.

    Article  CAS  Google Scholar 

  33. Hazzalin CA, Mahadevan LC . MAPK-regulated transcription:a continuously variable Gene switch? Nat Rev Mol Cell Bio 2002; 3: 30–40.

    Article  CAS  Google Scholar 

  34. Jukka W, Veli Matti K . Regulation of metalloproteinase expression in tumor invasion. FASEB J 1999; 13: 781–792.

    Article  Google Scholar 

  35. Simon C, Hicks MJ, Nemechek AJ, Mehta R, O’Malley BW, Goepfert H et al. PD098059, an inhibitor of ERK1 activation, attenuates the in vivo invasiveness of head and neck squamous cell carcinoma. Br J Cancer 1999; 80: 1412–1419.

    Article  CAS  Google Scholar 

  36. Noh EM, Kim JS, Hur H, Park BH, Song EK, Han MK et al. Cordycepin inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology 2009; 48: 45–48.

    Article  CAS  Google Scholar 

  37. Johansson N, Ala-aho R, Uitto V, Grénman R, Fusenig NE, López-Otín C et al. Expression of collagenase/3 (MMP/13) and collagenase/1 (MMP/1) by transformed keratinocytes is dependent on the activity of p38 mitogen/activated protein kinase. J Cell Sci 2000; 113: 227–235.

    CAS  PubMed  Google Scholar 

  38. Zhang JQ, Wan YL, Liu YC . TF/F Vlla complex induce the expression of MMP-7mRNA via P38 signal pathway in LOVO cells of colon cancer in vitro. Chin J Gen Surg 2007; 22: 918–921.

    Google Scholar 

  39. Bancroft CC, Chen Z, Dong G, Sunwoo JB, Yeh N, Park C et al. Coexpression of proangiogenic factors IL/8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK/MAPK and IKK/NF-kappaB signal pathways. Clin Cancer Res 2001; 7: 435–442.

    CAS  PubMed  Google Scholar 

  40. Ckajima E, Thorgeirsson UP . Different regulation of vascular endothelial growth factor expression by the ERK and P38 kinase pathways in V/ras, V/raf and V/myc transformed cells. Biochem Biophys Res Commun 2000; 270: 108–111.

    Article  Google Scholar 

  41. Erdèlyi K, Kiss A, Bakondi E, Bai P, Szabó C, Gergely P et al. Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 2005; 68: 895–904.

    PubMed  Google Scholar 

  42. Nakajima H, Nagaso H, Kakui N, Ishikawa M, Hiranuma T, Hoshiko S . Critical role of the automodification of poly(ADP-ribose)polymerase-1 in nuclear factor-kappaB dependent gene expression in primary cultured mouse glial cells. J Biol Chem 2004; 279: 42774–42786.

    Article  CAS  Google Scholar 

  43. Tikoo K, Bhatt DK, Gaikwad AB, Sharma V, Kabra DG . Differential effects of tannic acid on cisplatin induced nephrotoxicity in rats. FEBS Lett 2007; 581: 2027–2035.

    Article  CAS  Google Scholar 

  44. Hao LX, Wang YL, Li YY . Correlation of PARP expression with P-selectin and ICAM-1 expression in colorectal carcinoma. Basic Clin Med 2006; 26: 882–887.

    Google Scholar 

  45. Fossey SL, Bear MD, Kisseberth WC, Pennell M, London CA . Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 2011; 11: 125.

    Article  CAS  Google Scholar 

  46. Li KX, Li AM, Zhang JH . Effects of TrkB-BDNF signal pathway on synthesis and secretion of vascular endothelial growth factor in human neuroblastoma cells. Zhongguo Dang Dai Er Ke Za Zhi 2011; 13: 240–243.

    CAS  PubMed  Google Scholar 

  47. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M et al. Human primary adipocytes exhibit immune cell function:adipocytes prime inflammation independent of macrophages. PLoS One 2011; 6: e17154.

    Article  CAS  Google Scholar 

  48. Choi JA, Jin HJ, Jung S, Yang E, Choi JS, Chung SH et al. Effects of amniotic membrane suspension in human corneal wound healing in vitro. Mol Vis 2009; 5: 2230–2238.

    Google Scholar 

  49. Jiang YB, Zhang XL, Tang YL, Ma GS, Shen CX, Wei Q et al. Effects of heme oxygenase-1 gene modulated mesenchymal stem cells on vasculogenesis in ischemic swine hearts. Chin Med J 2011; 124: 401–407.

    CAS  PubMed  Google Scholar 

  50. Firoozrai M, Fallah S, Khorrmizadeh MR . Angiotensin II induces NF-κB, JNK and p38 MAPK activation in monocytic cells and increases matrix metalloproteinase-9 expression in a PKC- andRho kinase-dependent manner. Braz J Med Biol Res 2011; 44: 193–199.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC: 30870946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-l Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Fauzee, N., Wang, Yl. et al. Effect of silencing PARG in human colon carcinoma LoVo cells on the ability of HUVEC migration and proliferation. Cancer Gene Ther 19, 715–722 (2012). https://doi.org/10.1038/cgt.2012.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.48

Keywords

This article is cited by

Search

Quick links