Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interferon-β lipofection II. Mechanisms involved in cell death and bystander effect induced by cationic lipid-mediated interferon-β gene transfer to human tumor cells

Abstract

We evaluated the cytotoxic effects (apoptosis, necrosis and early senescence) of human interferon-β (hIFNβ) gene lipofection. The cytotoxicity of hIFNβ gene lipofection resulted equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) on human tumor cell lines derived from Ewing's sarcoma (EW7 and COH) and colon (HT-29) carcinomas. However, it was stronger than rhIFNβ on melanoma (M8) and breast adenocarcinoma (MCF7). To reveal the mechanisms involved in these differences, we compared the effects of hIFNβ gene and rhIFNβ protein on EW7 and M8 (sensitive and resistant to rhIFNβ protein, respectively). Lipofection with hIFNβ gene caused a mitochondrial potential decrease simultaneous with an increase of oxidative stress in both cell lines. However, rhIFNβ protein displayed the same pattern of response only in EW7-sensitive cell line. The great bystander effect of the hIFNβ gene lipofection, involving the production of reactive oxygen species, would be among the main causes of its success. In EW7, this effect killed >60% of EW7 cell population, even though only 1% of cells were expressing the transgene. As hIFNβ gene was effective even in the rhIFNβ protein-resistant M8 cell line and in a way not limited by low lipofection efficiency, these results strongly support the clinical potential of this approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM . Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 119–134.

    Article  CAS  PubMed  Google Scholar 

  2. Johns TG, Mackay IR, Callister KA, Hertzog PJ, Devenish RJ, Linnane AW . Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon beta. J Natl Cancer Inst 1992; 84: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida J, Mizuno M, Wakabayashi T . Interferon-β gene therapy for cancer: basic research to clinical application. Cancer Sci 2004; 95: 858–865.

    Article  CAS  PubMed  Google Scholar 

  4. Matsumoto K, Kubo H, Murata H, Uhara H, Takata M, Shibata S et al. A pilot study of human interferon beta gene therapy for patients with advanced melanoma by in vivo transduction using cationic liposomes. Jpn J Clin Oncol 2008; 38: 849–856.

    Article  PubMed  Google Scholar 

  5. Atzpodien J, Neuber K, Kamanabrou D, Fluck M, Brocker EB, Neumann C et al. Combination chemotherapy with or without s.c. IL-2 and IFN-alpha: results of a prospectively randomized trial of the Cooperative Advanced Malignant Melanoma Chemoimmunotherapy Group (ACIMM). Br J Cancer 2002; 86: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salmon P, Le Cotonnec JY, Galazka A, Abdul-Ahad A, Darragh A . Pharmacokinetics and pharmacodynamics of recombinant human interferon-beta in healthy male volunteers. J Interferon Cytokine Res 1996; 16: 759–764.

    Article  CAS  PubMed  Google Scholar 

  7. Tada H, Maron DJ, Choi EA, Barsoum J, Lei H, Xie Q et al. Systemic IFN-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. J Clin Invest 2001; 108: 83–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sterman DH, Recio A, Haas AR, Vachani A, Katz SI, Gillespie CT et al. A phase I trial of repeated intrapleural adenoviral-mediated interferon-beta gene transfer for mesothelioma and metastatic pleural effusions. Mol Ther 2010; 18: 852–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meyer O, Schughart K, Pavirani A, Kolbe HV . Multiple systemic expression of human interferon-beta in mice can be achieved upon repeated administration of optimized pcTG90-lipoplex. Gene Therapy 2000; 7: 1606–1611.

    Article  CAS  PubMed  Google Scholar 

  10. Finocchiaro LME, Glikin GC . Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Therapy 2008; 15: 267–276.

    Article  CAS  PubMed  Google Scholar 

  11. Finocchiaro LME, Villaverde MS, Gil Cardeza ML, Riveros MD, Glikin GC . Cytokine-enhanced vaccine and interferon-β plus suicide gene as combined therapy for spontaneous canine sarcomas. Res Vet Sci 2011; 91: 230–234.

    Article  CAS  PubMed  Google Scholar 

  12. Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K et al. A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther 2008; 16: 618–626.

    Article  CAS  PubMed  Google Scholar 

  13. Wakabayashi T, Natsume A, Hashizume Y, Fujii M, Mizuno M, Yoshida J . A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med 2008; 10: 329–339.

    Article  CAS  PubMed  Google Scholar 

  14. Sancéau J, Poupon MF, Delattre O, Sastre-Garau X, Wietzerbin J . Strong inhibition of Ewing tumor xenograft growth by combination of human interferon-alpha or interferon-beta with ifosfamide. Oncogene 2002; 21: 7700–7709.

    Article  PubMed  Google Scholar 

  15. Gnjatic S, Cai Z, Viguier M, Chouaib S, Guillet JG, Choppin J . Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 1998; 160: 328–333.

    CAS  PubMed  Google Scholar 

  16. Gil Cardeza ML, Villaverde MS, Fiszman GL, Altamirano NA, Cwirenbaum RA, Glikin GC et al. Suicide gene therapy on spontaneous canine melanoma: correlations between in vivo tumors and their derived multicell spheroids in vitro. Gene Therapy 2010; 17: 26–36.

    Article  CAS  PubMed  Google Scholar 

  17. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown SV, Hosking P, Li J, Williams N . ATP synthase is responsible for maintaining mitochondrial membrane potential in bloodstream form Trypanosoma brucei. Eukaryot Cell 2006; 5: 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 2009; 69: 3918–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng JC, Klausen C, Leung PC . Hydrogen peroxide mediates EGF-induced down-regulation of E-cadherin expression via p38 MAPK and Snail in human ovarian cancer cells. Mol Endocrinol 2010; 24: 1569–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lejeune D, Hasanuzzaman M, Pitcock A, Francis J, Sehgal I . The superoxide scavenger TEMPOL induces urokinase receptor (uPAR) expression in human prostate cancer cells. Mol Cancer 2006; 5: 21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP . Measurement of plasma hydroperoxide concentration by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 1994; 220: 403–409.

    Article  CAS  PubMed  Google Scholar 

  23. L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 2011; 7: e1002148.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kauffman MA, Sterin-Prync A, Papouchado M, González E, Vidal AJ, Grossberg SE et al. Immunogenicity of an interferon-beta1a product. Int J Immunopathol Pharmacol 2011; 24: 499–504.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Wilkinson M, Xia X, David M, Xu L, Purkel-Sutton A et al. Induction of IFN-regulated factors and antitumoral surveillance by transfected placebo plasmid DNA. Mol Ther 2005; 11: 112–119.

    Article  PubMed  Google Scholar 

  26. Gilloteaux J, Jamison JM, Arnold D, Neal DR, Summers JL . Morphology and DNA degeneration during autoschizic cell death in bladder carcinoma T24 cells induced by ascorbate and menadione treatment. Anat Rec A Discov Mol Cell Evol Biol 2006; 288: 58–83.

    Article  PubMed  Google Scholar 

  27. Squier MK, Cohen JJ . Standard quantitative assays for apoptosis. Mol Biotechnol 2001; 19: 305–312.

    Article  CAS  PubMed  Google Scholar 

  28. Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 2002; 22: 3497–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bykov VJ, Lambert JM, Hainaut P, Wiman KG . Mutant p53 rescue and modulation of p53 redox state. Cell Cycle 2009; 8: 2509–2517.

    Article  CAS  PubMed  Google Scholar 

  30. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  31. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007; 11: 37–51.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Blandino G, Oren M, Givol D . Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene 1998; 17: 1923–1930.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XQ, Yang Z, Benedict WF . Direct gene transfer of adenoviral-mediated interferon α into human bladder cancer cells but not the bystander factors produced induces endoplasmic reticulum stress-related cytotoxicity. Cancer Gene Ther 2011; 18: 260–264.

    Article  CAS  PubMed  Google Scholar 

  34. Krawiec L, Pizarro R, Aphalo P, Cavanagh E, Pisarev M, Juvenal G et al. Role of peroxidase inhibition by insulin in the bovine thyroid cell proliferation mechanism. Eur J Biochem 2004; 271: 2607–2614.

    Article  CAS  PubMed  Google Scholar 

  35. Osawa H, Mizuno M, Hatano M, Nakahara N, Tsuno T, Kuno T et al. Susceptibility to exogenously added interferon-beta protein depends on intracellular interferon-beta mRNA level in human glioma cells. Cytokine 2005; 32: 240–245.

    Article  CAS  PubMed  Google Scholar 

  36. Qin XQ, Tao N, Dergay A, Moy P, Fawell S, Davis A et al. Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci USA 1998; 95: 14411–14416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang G, Chen Y, Lu H, Cao X . Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death. Cell Death Differ 2007; 14: 327–337.

    Article  CAS  PubMed  Google Scholar 

  38. Shin-Ya M, Hirai H, Satoh E, Kishida T, Asada H, Aoki F et al. Intracellular interferon triggers Jak/Stat signaling cascade and induces p53-dependent antiviral protection. Biochem Biophys Res Commun 2005; 329: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Juana Wietzerbin for EW7 and COH cells, and Ana Bihary and Graciela Zenobi for technical assistance. This study was partially supported by grants from ANPCYT/FONCYT (PICT 2002-12084 and PICT 2007-00539) and UBA (PID-UBACYT-2008/2010-M027). GCG and LMEF are investigators, and MSV and MLG-C are fellows of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M E Finocchiaro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaverde, M., Gil-Cardeza, M., Glikin, G. et al. Interferon-β lipofection II. Mechanisms involved in cell death and bystander effect induced by cationic lipid-mediated interferon-β gene transfer to human tumor cells. Cancer Gene Ther 19, 420–430 (2012). https://doi.org/10.1038/cgt.2012.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.19

Keywords

This article is cited by

Search

Quick links