Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated intratumoral expression of immunostimulatory proteins in combination with systemic Treg inactivation induces tumor-destructive immune responses in mouse models

Abstract

Tumor-associated antigens (TAAs) include overexpressed self-antigens (for example, Her2/neu) and tumor virus antigens (for example, HPV-16 E6/E7). Although in cancer patients, TAA-specific CD4+ and CD8+ cells are often present, they are not able to control tumor growth. In recent studies, it became apparent that tumor site-located immune evasion mechanisms contribute to this phenomenon and that regulatory T cells have a major role. We tested in Her2/neu+ breast cancer and HPV-16 E6/E7+ cervical cancer mouse models, whether intratumoral expression of immunostimulatory proteins (ISPs), for example, recombinant antibodies (αCTLA-4, αCD137, αCD3), cyto/chemokines (IL-15, LIGHT, mda-7) and costimulatory ligands (CD80), through adenovirus(Ad)-mediated gene transfer would overcome resistance. In both the breast and cervical cancer model, none of the Ad.ISP vectors displayed a significant therapeutic effect when compared with an Ad vector that lacked a transgene (Ad.zero). However, the combination of Ad.ISP vectors with systemic T regulatory (Treg) depletion, using anti-CD25 mAb (breast cancer model) or low-dose cyclophosphamide (cervical cancer model) resulted in a significant delay of tumor growth in mice treated with Ad.αCTLA4. In the cervical cancer model, we also demonstrated the induction of a systemic antitumor immune response that was able to delay the growth of distant tumors. Ad.αCTLA4-mediated tumor-destructive immune responses involved NKT and CD8+ T cells. In both models no autoimmune reactions were observed. This study shows that Ad.αCTLA4 in combination with systemic Treg depletion has potentials in the immunotherapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Disis ML, Cheever MA . HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv Cancer Res 1997; 71: 343–371.

    Article  CAS  Google Scholar 

  2. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG . Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 2000; 62: 245–252.

    Article  CAS  Google Scholar 

  3. Knutson KL, Schiffman K, Disis ML . Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 2001; 107: 477–484.

    Article  CAS  Google Scholar 

  4. Li MO, Flavell RA . TGF-beta: a master of all T cell trades. Cell 2008; 134: 392–404.

    Article  CAS  Google Scholar 

  5. Yamaguchi T, Sakaguchi S . Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2006; 16: 115–123.

    Article  CAS  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  Google Scholar 

  7. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761.

    Article  CAS  Google Scholar 

  8. Durst M, Kleinheinz A, Hotz M, Gissman L . The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol 1985; 66 (Part 7): 1515–1522.

    Article  Google Scholar 

  9. Schiffman MH, Bauer HM, Hoover RN, Glass AG, Cadell DM, Rush BB et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia [see comments]. J Natl Cancer Inst 1993; 85: 958–964.

    Article  CAS  Google Scholar 

  10. Chen L, Mizuno MT, Singhal MC, Hu S-L, Galloway DA, Hellström I et al. Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papilloma virus type 16. J Immunol 1992; 148: 2617–2621.

    CAS  PubMed  Google Scholar 

  11. Chen LP, Thomas EK, Hu SL, Hellström I, Hellström KE . Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc Natl Acad Sci USA 1991; 88: 110–114.

    Article  CAS  Google Scholar 

  12. Eiben GL, da Silva DM, Fausch SC, Le Poole IC, Nishimura MI, Kast WM . Cervical cancer vaccines: recent advances in HPV research. Viral Immunol 2003; 16: 111–121.

    Article  CAS  Google Scholar 

  13. Ugen KE, Kutzler MA, Marrero B, Westover J, Coppola D, Weiner DB et al. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther 2006; 13: 969–974.

    Article  CAS  Google Scholar 

  14. Fan Z, Yu P, Wang Y, Fu ML, Liu W, Sun Y et al. NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors. Blood 2006; 107: 1342–1351.

    Article  CAS  Google Scholar 

  15. Miyahara R, Banerjee S, Kawano K, Efferson C, Tsuda N, Miyahara Y et al. Melanoma differentiation-associated gene-7 (mda-7)/interleukin (IL)-24 induces anticancer immunity in a syngeneic murine model. Cancer Gene Ther 2006; 13: 753–761.

    Article  CAS  Google Scholar 

  16. Ye Z, Hellstrom I, Hayden-Ledbetter M, Dahlin A, Ledbetter JA, Hellstrom KE . Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med 2002; 8: 343–348.

    Article  CAS  Google Scholar 

  17. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100: 8372–8377.

    Article  CAS  Google Scholar 

  18. Paul S, Regulier E, Rooke R, Stoeckel F, Geist M, Homann H et al. Tumor gene therapy by MVA-mediated expression of T-cell-stimulating antibodies. Cancer Gene Ther 2002; 9: 470–477.

    Article  CAS  Google Scholar 

  19. Cheng TL, Roffler S . Membrane-tethered proteins for basic research, imaging, and therapy. Med Res Rev 2008; 28: 885–928.

    Article  CAS  Google Scholar 

  20. Liao KW, Chen BM, Liu TB, Tzou SC, Lin YM, Lin KF et al. Stable expression of chimeric anti-CD3 receptors on mammalian cells for stimulation of antitumor immunity. Cancer Gene Ther 2003; 10: 779–790.

    Article  CAS  Google Scholar 

  21. Tuve S, Chen BM, Liu Y, Cheng TL, Toure P, Sow PS et al. Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor-destructive immune responses. Cancer Res 2007; 67: 5929–5939.

    Article  CAS  Google Scholar 

  22. Tuve S, Liu Y, Tragoolpua K, Jacobs JD, Yumul RC, Li ZY et al. In situ adenovirus vaccination engages T effector cells against cancer. Vaccine 2009; 27: 4225–4239.

    Article  CAS  Google Scholar 

  23. Knutson KL, Almand B, Dang Y, Disis ML . Neu antigen-negative variants can be generated aftaer neu-specific antibody therapy in neu transgenic mice. Cancer Res 2004; 64: 1146–1151.

    Article  CAS  Google Scholar 

  24. Feltkamp MC, Smits HL, Vierboom MP, Minnaar RP, de Jongh BM, Drijfhout JW et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  CAS  Google Scholar 

  25. Smahel M, Sima P, Ludvikova V, Vonka V . Modified HPV16 E7 Genes as DNA vaccine against E7-containing oncogenic cells. Virology 2001; 281: 231–238.

    Article  CAS  Google Scholar 

  26. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996; 347: 1523–1527.

    Article  CAS  Google Scholar 

  27. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT . HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989; 8: 3905–3910.

    Article  CAS  Google Scholar 

  28. Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 2001; 61: 7861–7867.

    CAS  PubMed  Google Scholar 

  29. Velders MP, Weijzen S, Eiben GL, Elmishad AG, Kloetzel PM, Higgins T et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol 2001; 166: 5366–5373.

    Article  CAS  Google Scholar 

  30. Greenstone HL, Nieland JD, de Visser KE, De Bruijn ML, Kirnbauer R, Roden RB et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA 1998; 95: 1800–1805.

    Article  CAS  Google Scholar 

  31. Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y . Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J Virol 2001; 75: 9654–9664.

    Article  CAS  Google Scholar 

  32. Di Paolo NC, Tuve S, Ni S, Hellstrom KE, Hellstrom I, Lieber A . Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses. Cancer Res 2006; 66: 960–969.

    Article  CAS  Google Scholar 

  33. Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 2006; 177: 1526–1533.

    Article  CAS  Google Scholar 

  34. DiPaolo N, Ni S, Gaggar A, Strauss R, Tuve S, Li ZY et al. Evaluation of adenovirus vectors containing serotype 35 fibers for vaccination. Mol Ther 2006; 13: 756–765.

    Article  CAS  Google Scholar 

  35. Yang Y, Yang S, Ye Z, Jaffar J, Zhou Y, Cutter E et al. Tumor cells expressing anti-CD137 scFv induce a tumor-destructive environment. Cancer Res 2007; 67: 2339–2344.

    Article  CAS  Google Scholar 

  36. Liao KW, Lo YC, Roffler SR . Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells. Gene Therapy 2000; 7: 339–347.

    Article  CAS  Google Scholar 

  37. Bernt KM, Liang M, Ye X, Ni S, Li Z-Y, Ye SL et al. A new type of adenovirus vector that utilizes homologous recombination to achieve tumor-specific replication. J Virol 2002; 76: 10994–11002.

    Article  CAS  Google Scholar 

  38. Chen L, McGowan P, Ashe S, Johnston JV, Hellström I, Hellström KE . B7-1/CD80-transduced tumor cells elicit better systemic immunity than wild-type tumor cells admixed with Corynebacterium parvum. Cancer Res 1994; 54: 5420–5423.

    CAS  PubMed  Google Scholar 

  39. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  Google Scholar 

  40. Steinwaerder DS, Carlson CA, Otto DL, Li ZY, Ni S, Lieber A . Tumor-specific gene expression in hepatic metastases by a replication-activated adenovirus vector. Nat Med 2001; 7: 240–243.

    Article  CAS  Google Scholar 

  41. Saeki T, Mhashilkar A, Chada S, Branch C, Roth JA, Ramesh R . Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Therapy 2000; 7: 2051–2057.

    Article  CAS  Google Scholar 

  42. Lee CH, Chiang YH, Chang SE, Chong CL, Cheng BM, Roffler SR . Tumor-localized ligation of CD3 and CD28 with systemic regulatory T-cell depletion induces potent innate and adaptive antitumor responses. Clin Cancer Res 2009; 15: 2756–2766.

    Article  CAS  Google Scholar 

  43. Kottke T, Thompson J, Diaz RM, Pulido J, Willmon C, Coffey M et al. Improved systemic delivery of oncolytic reovirus to established tumors using preconditioning with cyclophosphamide-mediated Treg modulation and interleukin-2. Clin Cancer Res 2009; 15: 561–569.

    Article  CAS  Google Scholar 

  44. Hung CF, Ma B, Monie A, Tsen SW, Wu TC . Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther 2008; 8: 421–439.

    Article  CAS  Google Scholar 

  45. Ribas A . Anti-CTLA4 antibody clinical trials in melanoma. Update Cancer Ther 2007; 2: 133–139.

    Article  Google Scholar 

  46. Eckert A, Schoeffler A, Dalle S, Phan A, Kiakouama L, Thomas L . Anti-CTLA4 monoclonal antibody induced sarcoidosis in a metastatic melanoma patient. Dermatology 2009; 218: 69–70.

    Article  CAS  Google Scholar 

  47. von Euw E, Chodon T, Attar N, Jalil J, Koya RC, Comin-Anduix B et al. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med 2009; 7: 35.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by NIH grant R01CA080192 (to AL); National Science Council Grant NSC96-2628-B001-003-MY3 (to SR); German Research Foundation (DFG) Postdoctoral Training Grant TU260/1-1 (to ST); Pacific Ovarian Cancer Research Consortium (POCRC, Grant P50 CA83636, to Nicole Urban, Fred Hutchinson Cancer Research Center, Seattle, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lieber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Tuve, S., Persson, J. et al. Adenovirus-mediated intratumoral expression of immunostimulatory proteins in combination with systemic Treg inactivation induces tumor-destructive immune responses in mouse models. Cancer Gene Ther 18, 407–418 (2011). https://doi.org/10.1038/cgt.2011.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.8

Keywords

This article is cited by

Search

Quick links