Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model

Abstract

Secondary lymphoid-tissue chemokine (SLC/CCL21) is a CC chemokine that is constitutively expressed in various lymphoid tissues and binds to chemokine receptor CCR7 on mature dendritic cells (DCs) and distinct T-and B-cell sub-populations. In vivo, CCL21 regulates the encounters between DC and T cells and thus is a key regulator of adaptive immune responses. We asked whether CCL21 is able to augment immunogenicity of a DNA-based vaccine against Her2/neu in a Balb/c mouse model with syngeneic Her2/neu+ tumor cells (D2F2/E2). Mice were vaccinated intramuscularly with plasmid DNA (pDNA) on day 1 and boosted on day 15; tumor challenge was performed subcutaneously on day 25. Coexpression of CCL21 and Her-2/neu resulted in induction of a TH1-polarized immune response and substantial improvement of the protective effect of the DNA vaccine. Coexpression of tumor antigen pDNA(Her2/neu) with both pDNA(GM-CSF) and pDNA(CCL21) as adjuvants led to further improvement of protection by the vaccine (70% tumor-free mice on day 35 vs 40% with either adjuvant alone vs 5–10% with tumor antigen alone). Our results show that CCL21 is a potent adjuvant for DNA vaccination, particularly in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF). Clinical use of a pDNA(Her2/neu/CCL21/GM-CSF) vaccine might be particularly promising in minimal residual Her2/neu+ breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stewart TJ, Smyth MJ . Chemokine-chemokine receptors in cancer immunotherapy. Immunotherapy 2009; 1: 109–127.

    Article  CAS  Google Scholar 

  2. Marsland BJ, Battig P, Bauer M, Ruedl C, Lassing U, Beerli R et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 2005; 22: 493–505.

    Article  CAS  Google Scholar 

  3. Friedman RS, Jacobelli J, Krummel MF . Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 2006; 7: 1101–1108.

    Article  CAS  Google Scholar 

  4. Worbs T, Mempel TR, Bölter J, von Andrian UH, Förster R . CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 2007; 3: 489–495.

    Article  Google Scholar 

  5. Gurunathan S, Klinman DM, Seder RA . DNA vaccines: immunology, application and optimization. Ann Rev Immunol 2000; 18: 927–974.

    Article  CAS  Google Scholar 

  6. Rabinovich GA, Gabrilovich D, Sotomayor EM . Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267–296.

    Article  CAS  Google Scholar 

  7. Menard S, Pupa S, Campiglio M, Tagliabue E . Biologic and therapeutic role of HER2 in cancer. Oncogene 2003; 22: 6570–6578.

    Article  CAS  Google Scholar 

  8. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CM . Vaccination for the treatment and prevention of cancer in animal models. Adv Immunol 2006; 90: 175–213.

    Article  CAS  Google Scholar 

  9. Romond EH, Perez EA, Bryant J, Suma VJ, Geyer Jr CE, Davidson NE et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673–1680.

    Article  CAS  Google Scholar 

  10. Curigliano G, Spitaleri G, Pietri E, Rescigno M, de Braud F, Cardillo A et al. Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol 2006; 17: 750–762.

    Article  CAS  Google Scholar 

  11. Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S et al. Combined clinical trial results of a Her2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res 2008; 14: 797–803.

    Article  CAS  Google Scholar 

  12. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K et al. Peptides derived from a wild-type murine proto-oncogene-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 1997; 159: 1336–1343.

    CAS  Google Scholar 

  13. Piechoski MP, Pilon SA, Wei WZ . Quantitative measurement of anti-ErbB-2 antibody by flow cytometry and ELISA. J Immunol Meth 2002; 259: 33–42.

    Article  Google Scholar 

  14. Stevenson FK, Zhu D, Rice J . New strategies for vaccination and imunomodulation in NHL. Ann Hematol 2001; 80 (Suppl 3): B132–B134.

    CAS  PubMed  Google Scholar 

  15. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman S, Shortman K et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996; 184: 1953–1962.

    Article  CAS  Google Scholar 

  16. Greenland JR, Letvin NL . Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007; 25: 3731–3741.

    Article  CAS  Google Scholar 

  17. DellÁgnola C, Biragyn A . Clinical utilisation of chemokines to combat cancer: the double-edged sword. Exp Rev Vaccines 2007; 6: 267–283.

    Article  Google Scholar 

  18. Coscia M, Biragyn A . Cancer immunotherapy with chemoattractant peptides. Sem Cancer Biol 2004; 14: 209–218.

    Article  CAS  Google Scholar 

  19. Scheerlinck JP . Genetic adjuvants for DNA vaccines. Vaccine 2001; 19: 2647–2656.

    Article  CAS  Google Scholar 

  20. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999; 189: 451–460.

    Article  CAS  Google Scholar 

  21. Ricart BG, John B, Lee D, Hunter AC, Hammer DA . Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. J Immunol 2011; 186: 53–61.

    Article  CAS  Google Scholar 

  22. Wei WZ, Shi WP, Galy A, Lichlyter D, Hernandez S, Groner B et al. Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 1999; 81: 748–754.

    Article  CAS  Google Scholar 

  23. Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, Kono K et al. Cellular immunity to the Her-2/neu protooncogene. Adv Cancer Res 2002; 85: 101–144.

    Article  CAS  Google Scholar 

  24. Lindencrona JA, Preise S, Kammertöns T, Schüler T, Piechocki M, Wei WZ et al. CD4+ T cell-mediated Her-2/neu–specific tumor rejection in the absence of B cells. Int J Cancer 2004; 109: 259–264.

    Article  CAS  Google Scholar 

  25. Pardoll DM . Paracrine cytokine adjuvants in cancer immunotherapy. Annu Rev Immunol 1995; 13: 399–415.

    Article  CAS  Google Scholar 

  26. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  Google Scholar 

  27. Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH et al. The CC chemokine CKb- 11/MIP-3b/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 2000; 164: 4025–4031.

    Article  CAS  Google Scholar 

  28. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry ML et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 2011; 117: 1196–1204.

    Article  CAS  Google Scholar 

  29. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT . A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive lymphocytes. Proc Natl Acad Sci USA 1998; 95: 258–263.

    Article  CAS  Google Scholar 

  30. Martin-Fontecha AS, Sebastiani S, Höpken UE, Uguccioni M, Lipp M, Lanzavecchia A et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 2003; 198: 615–621.

    Article  CAS  Google Scholar 

  31. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikaine S, Julkunen I et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 1999; 29: 1617–1625.

    Article  CAS  Google Scholar 

  32. Radstake TR, van der Voort R, ten Brummelhuis M, de Waal Melefijt M, Looman M, Figdor CG et al. Increased expression of CCL18, CCL19 and CCL17 by dendritic cells from patients with rheumatoid arthritis, and regulation by Fc gamma receptors. Ann Rheum Dis 2005; 64: 359–367.

    Article  CAS  Google Scholar 

  33. Sharma S, Stolin M, Luo J, Strieter RM, Burdick M, Zhu LX et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164: 4558–4563.

    Article  CAS  Google Scholar 

  34. Sharma S, Stolina M, Zhu L, Lin Y, Batra R, Huang M et al. Secondary lymphoid organ chemokine reduces pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 2001; 61: 6406–6412.

    CAS  PubMed  Google Scholar 

  35. Yang SC, Batra RK, Hillinger S, Reckamp KL, Strieter RM, Dubinett SM et al. Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 2006; 66: 3205–3213.

    Article  CAS  Google Scholar 

  36. Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Cancer Res 2004; 10: 2891–2901.

    CAS  Google Scholar 

  37. Qin H, Zhou C, Wang D, Ma W, Liang X, Lin C et al. Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology 2006; 117: 419–430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Westermann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Hoai, T., Baldenhofer, G., Sayed Ahmed, M. et al. CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model. Cancer Gene Ther 19, 69–76 (2012). https://doi.org/10.1038/cgt.2011.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.69

Keywords

This article is cited by

Search

Quick links