Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancement of CPT-11 antitumor activity by adenovirus-mediated expression of β–glucuronidase in tumors

Abstract

CPT-11 is a clinically important prodrug that requires conversion into the active metabolite SN-38, a potent topoisomerase I poison, for antitumor activity. However, SN-38 is rapidly metabolized to the inactive SN-38 glucuronide (SN-38G) in the liver, which reduces the amount of SN-38 available for killing cancer cells. Here, we investigated if local expression of β-glucuronidase (βG) on cancer cells to catalytically convert SN38G to SN38 could enhance the antitumor activity of CPT-11. βG was tethered on the plasma membrane of three different human cancer cell lines: human colon carcinoma (LS174T), lung adenocarcinoma (CL1-5) and bladder carcinoma (EJ). Surface β-glucuronidase-expressing cells were 20 to 80-fold more sensitive to SN-38G than the parental cells. Intravenous CPT-11 produced significantly greater suppression of CL1-5 and LS174 T tumors that expressed βG as compared with unmodified tumors. Furthermore, an adenoviral vector expressing membrane-tethered βG (Ad.βG) increased the sensitivity of cancer cells to SN-38G even at multiplicity of infections as low as 0.16, indicating bystander killing of non-transduced cancer cells. Importantly, intratumoral injection of Ad.βG significantly enhanced the in vivo antitumor activity of CPT-11 as compared with treatment with CPT-11 or Ad vectors alone. This study shows that Ad.βG has potential to boost the therapeutic index of CPT-11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mrozek E, Kolesar J, Young D, Allen J, Villalona-Calero M, Shapiro CL . Phase II study of sequentially administered low-dose mitomycin-C (MMC) and irinotecan (CPT-11) in women with metastatic breast cancer (MBC). Ann Oncol 2008; 19: 1417–1422.

    Article  CAS  PubMed  Google Scholar 

  2. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27: 4733–4740.

    Article  CAS  PubMed  Google Scholar 

  3. Nair J, de Stanchina E, Schwartz G . The topoisomerase I poison CPT-11 enhances the effect of the aurora B kinase inhibitor AZD1152 both in vitro and in vivo. Clin Cancer Res 2009; 15: 2022–2030.

    Article  CAS  PubMed  Google Scholar 

  4. Font A, Salazar R, Maurel J, Taron M, Ramirez J, Tabernero J et al. Cisplatin plus weekly CPT-11/docetaxel in advanced esophagogastric cancer: a phase I study with pharmacogenetic assessment of XPD, XRCC3 and UGT1A1 polymorphisms. Cancer Chemother Pharmacol 2008; 62: 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  5. Satoh T, Hosokawa M, Atsumi R, Suzuki W, Hakusui H, Nagai E . Metabolic activation of CPT-11, 7-ethyl-10-[4-(1-piperidino)-1- piperidino]carbonyloxycamptothecin, a novel antitumor agent, by carboxylesterase. Biol Pharm Bull 1994; 17: 662–664.

    Article  CAS  PubMed  Google Scholar 

  6. Rivory LP, Bowles MR, Robert J, Pond SM . Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol 1996; 52: 1103–1111.

    Article  CAS  PubMed  Google Scholar 

  7. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K . Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 1991; 51: 4187–4191.

    CAS  PubMed  Google Scholar 

  8. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 1998; 101: 847–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lokiec F, Canal P, Gay C, Chatelut E, Armand JP, Roche H et al. Pharmacokinetics of irinotecan and its metabolites in human blood, bile, and urine. Cancer Chemother Pharmacol 1995; 36: 79–82.

    Article  CAS  PubMed  Google Scholar 

  10. Rivory LP, Haaz MC, Canal P, Lokiec F, Armand JP, Robert J . Pharmacokinetic interrelationships of irinotecan (CPT-11) and its three major plasma metabolites in patients enrolled in phase I/II trials. Clin Cancer Res 1997; 3: 1261–1266.

    CAS  PubMed  Google Scholar 

  11. Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ et al. Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res 1998; 4: 2747–2754.

    CAS  PubMed  Google Scholar 

  12. Rouits E, Charasson V, Petain A, Boisdron-Celle M, Delord JP, Fonck M et al. Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer 2008; 99: 1239–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niculescu-Duvaz I, Springer C . Introduction to the background, principles, and state of the art in suicide gene therapy. Mol Biotechnol 2005; 30: 71–88.

    Article  CAS  PubMed  Google Scholar 

  14. Kojima A, Hackett NR, Ohwada A, Crystal RG . In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors. J Clin Invest 1998; 101: 1789–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wierdl M, Morton CL, Weeks JK, Danks MK, Harris LC, Potter PM . Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res 2001; 61: 5078–5082.

    CAS  PubMed  Google Scholar 

  16. Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM et al. A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 2001; 84: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prijovich ZM, Chen BM, Leu YL, Chern JW, Roffler SR . Anti-tumour activity and toxicity of the new prodrug 9-aminocamptothecin glucuronide (9ACG) in mice. Br J Cancer 2002; 86: 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E et al. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 1996; 56: 3752–3757.

    CAS  PubMed  Google Scholar 

  19. Cheng TL, Chou WC, Chen BM, Chern JW, Roffler SR . Characterization of an antineoplastic glucuronide prodrug. Biochem Pharmacol 1999; 58: 325–328.

    Article  CAS  PubMed  Google Scholar 

  20. Weyel D, Sedlacek H, Müller R, Brüsselbach S . Secreted human beta-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy. Gene Ther 2000; 7: 224–231.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng TL, Roffler S . Membrane-tethered proteins for basic research, imaging, and therapy. Med Res Rev 2008; 28: 885–928.

    Article  CAS  PubMed  Google Scholar 

  22. Heine D, Muller R, Brusselbach S . Cell surface display of a lysosomal enzyme for extracellular gene-directed enzyme prodrug therapy. Gene Ther 2001; 8: 1005–1010.

    Article  CAS  PubMed  Google Scholar 

  23. Chen KC, Cheng TL, Leu YL, Prijovich ZM, Chuang CH, Chen BM et al. Membrane-localized activation of glucuronide prodrugs by beta-glucuronidase enzymes. Cancer Gene Ther 2007; 14: 187–200.

    Article  CAS  PubMed  Google Scholar 

  24. Prijovich ZM, Chen KC, Roffler SR . Local enzymatic hydrolysis of an endogenously generated metabolite can enhance CPT-11 anticancer efficacy. Mol Cancer Ther 2009; 8: 940–946.

    Article  CAS  PubMed  Google Scholar 

  25. Rots M, Curiel D, Gerritsen W, Haisma H . Targeted cancer gene therapy: the flexibility of adenoviral gene therapy vectors. J Control Release 2003; 87 (1-3): 159–165.

    Article  CAS  PubMed  Google Scholar 

  26. Huang XW, Lieber A, Tang ZY, Lawrence TS, Moyer MP, Zhang M . Gene expression in intrahepatic tumors through DNA recombination by a replication-activated adenovirus vector. Cancer Gene Ther 2004; 11: 450–456.

    Article  CAS  PubMed  Google Scholar 

  27. Glasgow J, Everts M, Curiel D . Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 2006; 13: 830–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel P, Young JG, Mautner V, Ashdown D, Bonney S, Pineda RG et al. A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1984. Mol Ther 2009; 17: 1292–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997; 17: 353–360.

    Article  CAS  PubMed  Google Scholar 

  30. Marshall CJ, Franks LM, Carbonell AW . Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J Natl Cancer Inst 1977; 58: 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  31. Roffler SR, Wang HE, Yu HM, Chang WD, Cheng CM, Lu YL et al. A membrane antibody receptor for noninvasive imaging of gene expression. Gene Ther 2006; 13: 412–420.

    Article  CAS  PubMed  Google Scholar 

  32. Shayakhmetov D, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34 (+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steinwaerder D, Carlson C, Otto D, Li Z, Ni S, Lieber A . Tumor-specific gene expression in hepatic metastases by a replication-activated adenovirus vector. Nat Med 2001; 7: 240–243.

    Article  CAS  PubMed  Google Scholar 

  34. Xu F, Li S, Li X, Guo Y, Zou B, Xu R et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors. Cancer Gene Ther 2009; 16: 723–730.

    Article  CAS  PubMed  Google Scholar 

  35. Fuchita M, Ardiani A, Zhao L, Serve K, Stoddard BL, Black ME . Bacterial cytosine deaminase mutants created by molecular engineering show improved 5-fluorocytosine-mediated cell killing in vitro and in vivo. Cancer Res 2009; 69: 4791–4799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schepelmann S, Hallenbeck P, Ogilvie LM, Hedley D, Friedlos F, Martin J et al. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2. Cancer Res 2005; 65: 5003–5008.

    Article  CAS  PubMed  Google Scholar 

  37. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 2001; 7: 2182–2194.

    CAS  PubMed  Google Scholar 

  38. D’Arpa P, Beardmore C, Liu L . Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 1990; 50: 6919–6924.

    PubMed  Google Scholar 

  39. Su YC, Chuang KH, Wang YM, Cheng CM, Lin SR, Wang JY et al. Gene expression imaging by enzymatic catalysis of a fluorescent probe via membrane-anchored [beta]-glucuronidase. Gene Ther 2007; 14: 565–574.

    Article  CAS  PubMed  Google Scholar 

  40. Liao K, Chou W, Lo Y, Roffler S . Design of transgenes for efficient expression of active chimeric proteins on mammalian cells. Biotechnol Bioeng 2001; 73: 313–323.

    Article  CAS  PubMed  Google Scholar 

  41. Dachs G, Hunt M, Syddall S, Singleton D, Patterson A . Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 2009; 14: 4517–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B et al. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 1998; 58: 1195–1201.

    CAS  PubMed  Google Scholar 

  43. Juan TY, Roffler SR, Hou HS, Huang SM, Chen KC, Leu YL et al. Antiangiogenesis targeting tumor microenvironment synergizes glucuronide prodrug antitumor activity. Clin Cancer Res 2009; 15: 4600–4611.

    Article  CAS  PubMed  Google Scholar 

  44. Tzou S, Roffler S, Chuang K, Yeh H, Kao C, Su Y et al. Micro-PET imaging of beta-glucuronidase activity by the hydrophobic conversion of a glucuronide probe. Radiology 2009; 252: 754–762.

    Article  PubMed  Google Scholar 

  45. Tobin PJ, Dodds HM, Clarke S, Schnitzler M, Rivory LP . The relative contributions of carboxylesterase and beta-glucuronidase in the formation of SN-38 in human colorectal tumours. Oncol Rep 2003; 10: 1977–1979.

    CAS  PubMed  Google Scholar 

  46. Dodds HM, Tobin PJ, Stewart CF, Cheshire P, Hanna S, Houghton P et al. The importance of tumor glucuronidase in the activation of irinotecan in a mouse xenograft model. J Pharmacol Exp Ther 2002; 303: 649–655.

    Article  CAS  PubMed  Google Scholar 

  47. Chen KC, Wu CH, Chang CY, Lu WC, Tseng Q, Prijovich ZM et al. Directed evolution of a lysosomal enzyme with enhanced activity at neutral pH by mammalian cell-surface display. Chem Biol 2008; 15: 1277–1286.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng C, Lu Y, Chuang K, Hung W, Shiea J, Su Y et al. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther 2008; 15: 393–401.

    Article  CAS  PubMed  Google Scholar 

  49. Wierdl M, Tsurkan L, Hyatt J, Edwards C, Hatfield M, Morton C et al. An improved human carboxylesterase for enzyme/prodrug therapy with CPT-11. Cancer Gene Ther 2008; 15: 183–192.

    Article  CAS  PubMed  Google Scholar 

  50. Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res 2007; 67: 22–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Academia Sinica, Taipei, Taiwan (AS-98-TP-B09) and the National Science Council, Taipei, Taiwan (NSC-95-2311-B001-068-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Roffler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, PT., Chen, KC., Prijovich, Z. et al. Enhancement of CPT-11 antitumor activity by adenovirus-mediated expression of β–glucuronidase in tumors. Cancer Gene Ther 18, 381–389 (2011). https://doi.org/10.1038/cgt.2011.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.3

Keywords

This article is cited by

Search

Quick links