Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Radiation enhances long-term metastasis potential of residual hepatocellular carcinoma in nude mice through TMPRSS4-induced epithelial–mesenchymal transition

Abstract

Recurrence and metastasis are frequently observed after radiotherapy for hepatocellular carcinoma (HCC), although upregulation of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) induced by radiation has been claimed to be involved, the mechanism is not clarified yet. In the present study, by using MHCC97L, a human HCC cell line with metastatic potential, and its xenograft in nude mice, we found that radiation induced a 48- to 72-h temporary increase in the expression of MMP-2 and VEGF both in vitro and in vivo, but only the in vitro invasiveness of MHCC97L cells was enhanced, while the in vivo metastatic potential of tumors was suppressed. Whereas, 30 days after radiation, when the expression of MMP-2 and VEGF decreased to unirradiated control levels, the in vivo dissemination and metastatic potential of residual tumors have just begun to increase with overexpression of TMPRSS4, which induced loss of E-cadherin through induction of Smad-Interacting Protein 1 (SIP1), an E-cadherin transcriptional repressor, and led to epithelial–mesenchymal transition (EMT). This process was blocked by treatment of siRNA-TMPRSS4. In conclusion, our study revealed novel findings regarding the biphasic effect of radiation on the metastatic potential of residual HCC. Overexpression of TMPRSS4 has a critical role in radiation-induced long-term dissemination and metastasis of residual HCC by facilitating EMT. These findings may provide new clues to suppress the radiation-induced dissemination and metastasis, thereby improve the prognosis of HCC patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Krishnan S, Dawson LA, Seong J, Akine Y, Beddar S, Briere TM et al. Radiotherapy for hepatocellular carcinoma: an overview. Ann Surg Oncol 2008; 15: 1015–1024.

    Article  PubMed  Google Scholar 

  2. Kulik LM, Carr BI, Mulcahy MF, Lewandowski RJ, Atassi B, Ryu RK et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008; 47: 71–81.

    Article  PubMed  Google Scholar 

  3. Hassoun Z, Gores GJ . Treatment of hepatocellular carcinoma. Clin Gastroenterol Hepatol 2003; 1: 10–18.

    Article  PubMed  Google Scholar 

  4. Maeta M, Koga S, Kanayama H, Murakami A, Ikeda Y, Inoue Y . Does preoperative radiation for thoracic esophageal cancer promote intramural lymphatic invasion. Jpn J Surg 1986; 16: 84–89.

    Article  CAS  PubMed  Google Scholar 

  5. Lai PP, Perez CA, Lockett MA . Prognostic significance of pelvic recurrence and distant metastasis in prostate carcinoma following definitive radiotherapy. Int J Radiat Oncol Biol Phys 1992; 24: 423–430.

    Article  CAS  PubMed  Google Scholar 

  6. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354: 567–578.

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan HS, Murphy ED . The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma. Increased frequency of pulmonary metastasis. J Natl Cancer Inst 1949; 9: 407–413.

    CAS  PubMed  Google Scholar 

  8. Baumann M, Becker S, Kruger HJ, Vogler H, Maurer T, Beck-Bornholdt HP . Flow cytometric determination of the time of metastasis during fractionated radiation therapy of the rat rhabdomyosarcoma R1H. Int J Radiat Biol 1990; 58: 361–369.

    Article  CAS  PubMed  Google Scholar 

  9. de Ruiter J, Cramer SJ, Lelieveld P, van PLM . Comparison of metastatic disease after local tumour treatment with radiotherapy or surgery in various tumour models. Eur J Cancer Clin Oncol 1982; 18: 281–289.

    Article  CAS  PubMed  Google Scholar 

  10. Heisel MA, Laug WE, Stowe SM, Jones PA . Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells. Cancer Res 1984; 44: 2441–2445.

    CAS  PubMed  Google Scholar 

  11. Bonfil RD, Bustuoabad OD, Ruggiero RA, Meiss RP, Pasqualini CD . Tumor necrosis can facilitate the appearance of metastases. Clin Exp Metastasis 1988; 6: 121–129.

    Article  CAS  PubMed  Google Scholar 

  12. Kaliski A, Maggiorella L, Cengel KA, Mathe D, Rouffiac V, Opolon P et al. Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 2005; 4: 1717–1728.

    Article  CAS  PubMed  Google Scholar 

  13. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Devi GR . A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 2003; 10: 823–832.

    Article  CAS  PubMed  Google Scholar 

  14. Bauman GS, Fisher BJ, McDonald W, Amberger VR, Moore E, Del Maestro RF . Effects of radiation on a three-dimensional model of malignant glioma invasion. Int J Dev Neurosci 1999; 17: 643–651.

    Article  CAS  PubMed  Google Scholar 

  15. Gliemroth J, Feyerabend T, Gerlach C, Arnold H, Terzis AJ . Proliferation, migration, and invasion of human glioma cells exposed to fractionated radiotherapy in vitro. Neurosurg Rev 2003; 26: 198–205.

    Article  PubMed  Google Scholar 

  16. Tian J, Tang ZY, Ye SL, Liu YK, Lin ZY, Chen J et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer 1999; 81: 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tavian D, Salvi A, De Petro G, Barlati S . Stable expression of antisense urokinase mRNA inhibits the proliferation and invasion of human hepatocellular carcinoma cells. Cancer Gene Ther 2003; 10: 112–120.

    Article  CAS  PubMed  Google Scholar 

  18. Labonte P, Kadhim S, Bowlin T, Mounir S . Inhibition of tumor growth with doxorubicin in a new orthotopically implanted human hepatocellular carcinoma model. Hepatol Res 2000; 18: 72–85.

    Article  CAS  PubMed  Google Scholar 

  19. Song Y, Dong MM, Yang HF . Effects of RNA interference targeting four different genes on the growth and proliferation of nasopharyngeal carcinoma CNE-2Z cells. Cancer Gene Ther 2011; 18: 297–304.

    Article  CAS  PubMed  Google Scholar 

  20. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005; 33: 6566–6578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung H, Lee KP, Park SJ, Park JH, Jang YS, Choi SY et al. TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition. Oncogene 2008; 27: 2635–2647.

    Article  CAS  PubMed  Google Scholar 

  22. von Essen CF . Radiation enhancement of metastasis: a review. Clin Exp Metastasis 1991; 9: 77–104.

    Article  CAS  PubMed  Google Scholar 

  23. Jadhav U, Mohanam S . Response of neuroblastoma cells to ionizing radiation: modulation of in vitro invasiveness and angiogenesis of human microvascular endothelial cells. Int J Oncol 2006; 29: 1525–1531.

    CAS  PubMed  Google Scholar 

  24. Cheng JC, Chou CH, Kuo ML, Hsieh CY . Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 2006; 25: 7009–7018.

    Article  CAS  PubMed  Google Scholar 

  25. Speake WJ, Dean RA, Kumar A, Morris TM, Scholefield JH, Watson SA . Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. Eur J Surg Oncol 2005; 31: 869–874.

    Article  CAS  PubMed  Google Scholar 

  26. Javle MM, Gibbs JF, Iwata KK, Pak Y, Rutledge P, Yu J et al. Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer. Ann Surg Oncol 2007; 14: 3527–3533.

    Article  CAS  PubMed  Google Scholar 

  27. Ding W, You H, Dang H, LeBlanc F, Galicia V, Lu SC et al. Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology 2010; 52: 945–953.

    Article  CAS  PubMed  Google Scholar 

  28. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  29. Hwang SY, Jung JW, Jeong JS, Kim YJ, Oh ES, Kim TH et al. Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. Int J Cancer 2006; 118: 2056–2063.

    Article  CAS  PubMed  Google Scholar 

  30. Nalla AK, Asuthkar S, Bhoopathi P, Gujrati M, Dinh DH, Rao JS . Suppression of uPAR retards radiation-induced invasion and migration mediated by integrin beta1/FAK signaling in medulloblastoma. PLoS One 2010; 5: e13006.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rofstad EK, Mathiesen B, Galappathi K . Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 2004; 64: 13–18.

    Article  CAS  PubMed  Google Scholar 

  32. Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 2007; 67: 8662–8670.

    Article  CAS  PubMed  Google Scholar 

  33. Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F . Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecol Oncol 2007; 107: 500–504.

    Article  PubMed  Google Scholar 

  34. Wallrapp C, Hähnel S, Müller-Pillasch F, Burghardt B, Iwamura T, Ruthenbürger M et al. A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res 2000; 60: 2602–2606.

    CAS  PubMed  Google Scholar 

  35. Horsman MR, Murata R . Combination of vascular targeting agents with thermal or radiation therapy. Oncogene 2002; 54: 1518–1523.

    CAS  Google Scholar 

  36. Choi SY, Shin HC, Kim SY, Park YW . Role of TMPRSS4 during cancer progression. Drug News Perspect 2008; 21: 417–423.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 30901444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z-Y Tang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Zeng, ZC., Wang, L. et al. Radiation enhances long-term metastasis potential of residual hepatocellular carcinoma in nude mice through TMPRSS4-induced epithelial–mesenchymal transition. Cancer Gene Ther 18, 617–626 (2011). https://doi.org/10.1038/cgt.2011.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.29

Keywords

This article is cited by

Search

Quick links