Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell encapsulation technology as a novel strategy for human anti-tumor immunotherapy

Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant in autologous cell-based anti-tumor immunotherapy has recently been approved for clinical application. To avoid the need for individualized processing of autologous cells, we developed a novel strategy based on the encapsulation of GM-CSF-secreting human allogeneic cells. GM-CSF-producing K562 cells showed high, stable and reproducible cytokine secretion when enclosed into macrocapsules. For clinical development, the cryopreservation of these devices is critical. Thawing of capsules frozen at different time points displayed differences in GM-CSF release shortly after thawing. However, similar secretion values to those of non-frozen control capsules were obtained 8 days after thawing at a rate of >1000 ng GM-CSF per capsule every 24 h. For future human application, longer and reinforced capsules were designed. After irradiation and cryopreservation, these capsules produced >300 ng GM-CSF per capsule every 24 h 1 week after thawing. The in vivo implantation of encapsulated K562 cells was evaluated in mice and showed preserved cell survival. Finally, as a proof of principle of biological activity, capsules containing B16-GM-CSF allogeneic cells implanted in mice induced a prompt inflammatory reaction. The ability to reliably achieve high adjuvant release using a standardized procedure may lead to a new clinical application of GM-CSF in cell-based cancer immunization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327.

    Article  CAS  Google Scholar 

  2. Smith II JW, Walker EB, Fox BA, Haley D, Wisner KP, Doran T et al. Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J Clin Oncol 2003; 21: 1562–1573.

    Article  CAS  Google Scholar 

  3. Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res 2002; 8: 2782–2787.

    CAS  PubMed  Google Scholar 

  4. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  Google Scholar 

  5. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  Google Scholar 

  6. Berd D, Maguire Jr HC, McCue P, Mastrangelo MJ . Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J Clin Oncol 1990; 8: 1858–1867.

    Article  CAS  Google Scholar 

  7. Elliott GT, McLeod RA, Perez J, Von Eschen KB . Interim results of a phase II multicenter clinical trial evaluating the activity of a therapeutic allogeneic melanoma vaccine (theraccine) in the treatment of disseminated malignant melanoma. Semin Surg Oncol 1993; 9: 264–272.

    CAS  PubMed  Google Scholar 

  8. Pardoll DM . Cancer vaccines. Nat Med 1998; 4: 525–531.

    Article  CAS  Google Scholar 

  9. Aoki T, Tashiro K, Miyatake S, Kinashi T, Nakano T, Oda Y et al. Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 1992; 89: 3850–3854.

    Article  CAS  Google Scholar 

  10. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  Google Scholar 

  11. Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E . Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 1990; 50: 7820–7825.

    CAS  PubMed  Google Scholar 

  12. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E . Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990; 172: 1217–1224.

    Article  CAS  Google Scholar 

  13. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991; 254: 713–716.

    Article  CAS  Google Scholar 

  14. Lee CT, Wu S, Ciernik IF, Chen H, Nadaf-Rahrov S, Gabrilovich D et al. Genetic immunotherapy of established tumors with adenovirus-murine granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 1997; 8: 187–193.

    Article  CAS  Google Scholar 

  15. Armstrong CA, Botella R, Galloway TH, Murray N, Kramp JM, Song IS et al. Antitumor effects of granulocyte-macrophage colony-stimulating factor production by melanoma cells. Cancer Res 1996; 56: 2191–2198.

    CAS  PubMed  Google Scholar 

  16. Hsieh CL, Pang VF, Chen DS, Hwang LH . Regression of established mouse leukemia by GM-CSF-transduced tumor vaccine: implications for cytotoxic T lymphocyte responses and tumor burdens. Hum Gene Ther 1997; 8: 1843–1854.

    Article  CAS  Google Scholar 

  17. Shrayer DP, Bogaars H, Wolf SF, Hearing VJ, Wanebo HJ . A new mouse model of experimental melanoma for vaccine and lymphokine therapy. Int J Oncol 1998; 13: 361–374.

    CAS  PubMed  Google Scholar 

  18. Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G et al. Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 1997; 4: 345–352.

    CAS  PubMed  Google Scholar 

  19. Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 1997; 57: 1537–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21: 3343–3350.

    Article  CAS  Google Scholar 

  21. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95: 13141–13146.

    Article  CAS  Google Scholar 

  22. Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999; 59: 5160–5168.

    CAS  PubMed  Google Scholar 

  23. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001; 19: 145–156.

    Article  CAS  Google Scholar 

  24. Nemunaitis J, Sterman D, Jablons D, Smith II JW, Fox B, Maples P et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 2004; 96: 326–331.

    Article  CAS  Google Scholar 

  25. Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003; 21: 624–630.

    Article  Google Scholar 

  26. Dalle B, Payen E, Regulier E, Deglon N, Rouyer-Fessard P, Beuzard Y et al. Improvement of mouse beta-thalassemia upon erythropoietin delivery by encapsulated myoblasts. Gene Ther 1999; 6: 157–161.

    Article  CAS  Google Scholar 

  27. Schneider BL, Peduto G, Aebischer P . A self-immunomodulating myoblast cell line for erythropoietin delivery. Gene Ther 2001; 8: 58–66.

    Article  CAS  Google Scholar 

  28. Schwenter F, Deglon N, Aebischer P . Optimization of human erythropoietin secretion from MLV-infected human primary fibroblasts used for encapsulated cell therapy. J Gene Med 2003; 5: 246–257.

    Article  CAS  Google Scholar 

  29. Schwenter F, Schneider BL, Pralong WF, Deglon N, Aebischer P . Survival of encapsulated human primary fibroblasts and erythropoietin expression under xenogeneic conditions. Hum Gene Ther 2004; 15: 669–680.

    Article  CAS  Google Scholar 

  30. Hortelano G, Wang L, Xu N, Ofosu FA . Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis. Haemophilia 2001; 7: 207–214.

    Article  CAS  Google Scholar 

  31. Aebischer P, Winn SR, Tresco PA, Jaeger CB, Greene LA . Transplantation of polymer encapsulated neurotransmitter secreting cells: effect of the encapsulation technique. J Biomech Eng 1991; 113: 178–183.

    Article  CAS  Google Scholar 

  32. Deglon N, Heyd B, Tan SA, Joseph JM, Zurn AD, Aebischer P . Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther 1996; 7: 2135–2146.

    Article  CAS  Google Scholar 

  33. Scharp DW, Swanson CJ, Olack BJ, Latta PP, Hegre OD, Doherty EJ et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 1994; 43: 1167–1170.

    Article  CAS  Google Scholar 

  34. Aebischer P, Schluep M, Deglon N, Joseph JM, Hirt L, Heyd B et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 1996; 2: 696–699.

    Article  CAS  Google Scholar 

  35. Schwenter F, Bouche N, Pralong WF, Aebischer P . In vivo calcium deposition on polyvinyl alcohol matrix used in hollow fiber cell macroencapsulation devices. Biomaterials 2004; 25: 3861–3868.

    Article  CAS  Google Scholar 

  36. Schneider BL, Schwenter F, Pralong WF, Aebischer P . Prevention of the initial host immuno-inflammatory response determines the long-term survival of encapsulated myoblasts genetically engineered for erythropoietin delivery. Mol Ther 2003; 7: 506–514.

    Article  CAS  Google Scholar 

  37. Andersson LC, Nilsson K, Gahmberg CG . K562--a human erythroleukemic cell line. Int J Cancer 1979; 23: 143–147.

    Article  CAS  Google Scholar 

  38. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G . Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 2000; 60: 3239–3246.

    CAS  PubMed  Google Scholar 

  39. Cole DR, Waterfall M, McIntyre M, Baird JD . Microencapsulated islet grafts in the BB/E rat: a possible role for cytokines in graft failure. Diabetologia 1992; 35: 231–237.

    Article  CAS  Google Scholar 

  40. Lanza RP, Beyer AM, Chick WL . Xenogenic humoral responses to islets transplanted in biohybrid diffusion chambers. Transplantation 1994; 57: 1371–1375.

    Article  CAS  Google Scholar 

  41. Chang AE, Li Q, Bishop DK, Normolle DP, Redman BD, Nickoloff BJ . Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 2000; 11: 839–850.

    Article  CAS  Google Scholar 

  42. Kusumoto M, Umeda S, Ikubo A, Aoki Y, Tawfik O, Oben R et al. Phase 1 clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene. Cancer Immunol Immunother 2001; 50: 373–381.

    Article  CAS  Google Scholar 

  43. Luiten RM, Kueter EW, Mooi W, Gallee MP, Rankin EM, Gerritsen WR et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005; 23: 8978–8991.

    Article  CAS  Google Scholar 

  44. Borrello I, Sotomayor EM, Cooke S, Levitsky HI . A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum Gene Ther 1999; 10: 1983–1991.

    Article  CAS  Google Scholar 

  45. Dessureault S, Alsarraj M, McCarthy S, Hunter T, Noyes D, Lee D et al. A GM-CSF/CD40L producing cell augments anti-tumor T cell responses. J Surg Res 2005; 125: 173–181.

    Article  CAS  Google Scholar 

  46. Dessureault S, Noyes D, Lee D, Dunn M, Janssen W, Cantor A et al. A phase-I trial using a universal GM-CSF-producing and CD40L-expressing bystander cell line (GM.CD40L) in the formulation of autologous tumor cell-based vaccines for cancer patients with stage IV disease. Ann Surg Oncol 2007; 14: 869–884.

    Article  Google Scholar 

  47. Nelson WG, Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA et al. Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol 2000; 46 Suppl: S67–S72.

    Article  CAS  Google Scholar 

  48. Jaffee EM, Thomas MC, Huang AY, Hauda KM, Levitsky HI, Pardoll DM . Enhanced immune priming with spatial distribution of paracrine cytokine vaccines. J Immunother Emphasis Tumor Immunol 1996; 19: 176–183.

    Article  CAS  Google Scholar 

  49. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I . High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 2004; 64: 6337–6343.

    Article  CAS  Google Scholar 

  50. De Vos P, Van Straaten JF, Nieuwenhuizen AG, de Groot M, Ploeg RJ, De Haan BJ et al. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 1999; 48: 1381–1388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Swiss National Science Foundation (PNR 37), the Swiss Confederation's innovation promotion agency in collaboration with MaxiVAX SA, la Ligue genevoise contre le cancer and la Fondation pour la lutte contre le cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Schwenter.

Ethics declarations

Competing interests

N Mach is stocks owners of MaxiVAX SA. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenter, F., Zarei, S., Luy, P. et al. Cell encapsulation technology as a novel strategy for human anti-tumor immunotherapy. Cancer Gene Ther 18, 553–562 (2011). https://doi.org/10.1038/cgt.2011.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.22

Keywords

This article is cited by

Search

Quick links