Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel adenovirus-based helper system to support production of recombinant parvovirus

Abstract

Preclinical studies using various cell culture and animal systems highlight the potential of recombinant rodent parvoviruses (recPVs) for cancer therapy. Production of these viruses is, however, not efficient and this hampers the clinical applications of these agents. In this study, we show that the adenovirus genes E2a, E4(orf6) and VA RNA increase the production of recPVs by more than 10-fold and reduce the time of production from 3 to 2 days in HEK293T cells. The helper effects of these genes can be observed with different recPVs, regardless of the nature and size of the inserted transgene. Furthermore, we generated a recombinant Adenovirus 5 carrying the parvovirus VP transcription unit. This helper, named Ad-VP, allows recPVs to be efficiently produced through a protocol based only on cell infection, making possible to use cell lines, such as NB324K, which are good producers of parvoviruses but are hardly transfectable. Hence, we could further improve viral titers and reduce time and costs of production. This Ad-VP helper-based protocol could be scaled up to a bioreactor format for the generation of the large amounts of recPVs needed for future clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rommelaere J, Cornelis JJ . Antineoplastic activity of parvoviruses. J Virol Methods 1991; 33: 233–251.

    Article  CAS  PubMed  Google Scholar 

  2. Atchison RW, Casto BC, Hammon WM . Adenovirus-associated defective virus particles. Science 1965; 149: 754–756.

    Article  CAS  PubMed  Google Scholar 

  3. Cornelis JJ, Deleu L, Kock U, Rommelaere J . Parvovirus oncosuppression. In: Kerr JR, Bloom ME, Linden RM, Parrish CR (eds). Parvoviruses. Hodder Arnold E Ltd, London: United Kingdom, London, 2006, pp 365–378.

    Google Scholar 

  4. Kestler J, Neeb B, Struyf S, Van Damme J, Cotmore SF, D’Abramo A et al. cis requirements for the efficient production of recombinant DNA vectors based on autonomous parvoviruses. Hum Gene Ther 1999; 10: 1619–1632.

    Article  CAS  PubMed  Google Scholar 

  5. Cornelis JJ, Salome N, Dinsart C, Rommelaere J . Vectors based on autonomous parvoviruses: novel tools to treat cancer? J Gene Med 2004; 6 (Suppl 1): S193–S202.

    Article  CAS  PubMed  Google Scholar 

  6. Dupont F, Avalosse B, Karim A, Mine N, Bosseler M, Maron A et al. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector. Gene Ther 2000; 7: 790–796.

    Article  CAS  PubMed  Google Scholar 

  7. Olijslagers S, Dege AY, Dinsart C, Voorhoeve M, Rommelaere J, Noteborn MH et al. Potentiation of a recombinant oncolytic parvovirus by expression of Apoptin. Cancer Gene Ther 2001; 8: 958–965.

    Article  CAS  PubMed  Google Scholar 

  8. El Bakkouri K, Servais C, Clement N, Cheong SC, Franssen JD, Velu T et al. In vivo anti-tumour activity of recombinant MVM parvoviral vectors carrying the human interleukin-2 cDNA. J Gene Med 2005; 7: 189–197.

    Article  CAS  PubMed  Google Scholar 

  9. Haag A, Menten P, Van Damme J, Dinsart C, Rommelaere J, Cornelis JJ . Highly efficient transduction and expression of cytokine genes in human tumor cells by means of autonomous parvovirus vectors; generation of antitumor responses in recipient mice. Hum Gene Ther 2000; 11: 597–609.

    Article  CAS  PubMed  Google Scholar 

  10. Wetzel K, Menten P, Opdenakker G, Van Damme J, Grone HJ, Giese N et al. Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts. J Gene Med 2001; 3: 326–337.

    Article  CAS  PubMed  Google Scholar 

  11. Wetzel K, Struyf S, Van Damme J, Kayser T, Vecchi A, Sozzani S et al. MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. Int J Cancer 2007; 120: 1364–1371.

    Article  CAS  PubMed  Google Scholar 

  12. Giese NA, Raykov Z, DeMartino L, Vecchi A, Sozzani S, Dinsart C et al. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther 2002; 9: 432–442.

    Article  CAS  PubMed  Google Scholar 

  13. Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R et al. TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 2009; 16: 149–160.

    Article  CAS  PubMed  Google Scholar 

  14. Brandenburger A, Russell S . A novel packaging system for the generation of helper-free oncolytic MVM vector stocks. Gene Ther 1996; 3: 927–931.

    CAS  PubMed  Google Scholar 

  15. El Bakkouri K, Clement N, Velu T, Brandenburger A . Amplification of MVM(p) vectors through serial infection of a new packaging cell line. Tumor Targeting 1999; 4: 210–217.

    CAS  Google Scholar 

  16. Chang LS, Shi Y, Shenk T . Adeno-associated virus P5 promoter contains an adenovirus E1A-inducible element and a binding site for the major late transcription factor. J Virol 1989; 63: 3479–3488.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carter BJ, Antoni BA, Klessig DF . Adenovirus containing a deletion of the early region 2A gene allows growth of adeno-associated virus with decreased efficiency. Virology 1992; 191: 473–476.

    Article  CAS  PubMed  Google Scholar 

  18. Janik JE, Huston MM, Cho K, Rose JA . Efficient synthesis of adeno-associated virus structural proteins requires both adenovirus DNA binding protein and VA I RNA. Virology 1989; 168: 320–329.

    Article  CAS  PubMed  Google Scholar 

  19. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nayak R, Pintel DJ . Adeno-associated viruses can induce phosphorylation of eIF2alpha via PKR activation, which can be overcome by helper adenovirus type 5 virus-associated RNA. J Virol 2007; 81: 11908–11916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grimm D, Kleinschmidt JA . Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 1999; 10: 2445–2450.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsushita T, Elliger S, Elliger C, Podsakoff G, Villarreal L, Kurtzman GJ et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 1998; 5: 938–945.

    Article  CAS  PubMed  Google Scholar 

  24. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998; 9: 2745–2760.

    Article  CAS  PubMed  Google Scholar 

  25. Guan W, Wong S, Zhi N, Qiu J . The genome of human parvovirus B19 can replicate in nonpermissive cells with the help of adenovirus genes and produces infectious virus. J Virol 2009; 83: 9541–9553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ledinko N, Toolan HW . Human adenovirus type 12 as a ‘helper’ for growth of H-1 virus. J Virol 1968; 2: 155–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fox E, Moen Jr PT, Bodnar JW . Replication of minute virus of mice DNA in adenovirus-infected or adenovirus-transformed cells. Virology 1990; 176: 403–412.

    Article  CAS  PubMed  Google Scholar 

  28. Wrzesinski C, Tesfay L, Salome N, Jauniaux JC, Rommelaere J, Cornelis J et al. Chimeric and pseudotyped parvoviruses minimize the contamination of recombinant stocks with replication-competent viruses and identify a DNA sequence that restricts parvovirus H-1 in mouse cells. J Virol 2003; 77: 3851–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mailly L, Boulade-Ladame C, Orfanoudakis G, Deryckere F . A novel adenovirus vector for easy cloning in the E3 region downstream of the CMV promoter. Virol J 2008; 5: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE . Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 2006; 138 (1–2): 85–98.

    Article  CAS  PubMed  Google Scholar 

  32. Bodendorf U, Cziepluch C, Jauniaux JC, Rommelaere J, Salome N . Nuclear export factor CRM1 interacts with nonstructural proteins NS2 from parvovirus minute virus of mice. J Virol 1999; 73: 7769–7779.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer GA, Tattersall P . Autonomous parvoviruses as gene transfer vehicles. Contrib Microbiol 2000; 4: 178–202.

    Article  CAS  PubMed  Google Scholar 

  34. Lusky M, Grave L, Dieterle A, Dreyer D, Christ M, Ziller C et al. Regulation of adenovirus-mediated transgene expression by the viral E4 gene products: requirement for E4 ORF3. J Virol 1999; 73: 8308–8319.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the team of the DKFZ virus production and development unit, in particular Markus Müller, Silvia Münstermann and Barbara Liebertrau for their valuable help with virus production and characterization. We are also indebted to Melanie Krämer for technical assistance and Nathalie Salomé and Michele Vogel for the anti-NS1 antibody. NEA was supported by long-term fellowships from Alexander von Humboldt-Foundation, (Bonn, Germany) and the European Molecular Biology Organization (Heidelberg, Germany). This work was supported by a grant from the Helmholtz-Gemeinschaft in the frame of the Deutsches Krebsforschungszentrum/Cancéropôle du Grand-Est joint Programme in Applied Tumor Virology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Marchini.

Ethics declarations

Competing interests

A patent application, based on the results described in this article, has been submitted by the authors to the European Patent Office.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Andaloussi, N., Endele, M., Leuchs, B. et al. Novel adenovirus-based helper system to support production of recombinant parvovirus. Cancer Gene Ther 18, 240–249 (2011). https://doi.org/10.1038/cgt.2010.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.73

Keywords

This article is cited by

Search

Quick links