Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct and indirect antitumor effects by human peripheral blood lymphocytes expressing both chimeric immune receptor and interleukin-2 in ovarian cancer xenograft model

Abstract

Human peripheral blood lymphocytes (PBLs) electroporated with RNA encoding anti-Her-2/neu-specific chimeric immune receptor (CIR) have been reported to elicit potent immune responses against SKOV3 tumors in a nude mouse model. However, CIR-electroporated PBL (CIR-PBL) did not proliferate, and the cell number rapidly decreased in the absence of exogenous interleukin-2 (IL-2). In this study, PBLs electroporated with both CIR and IL-2 RNA (CIR/IL-2-PBL) were studied to determine whether antitumor effects could be improved by adoptive immunotherapy. CIR and IL-2 were expressed in CIR/IL-2-PBL at levels similar to PBLs electroporated, with IL-2 RNA (IL-2-PBL) or CIR-PBL. Transfer of IL-2 RNA induced proliferation and prolonged survival of PBLs in vitro. In a xenograft model, both IL-2-PBL and CIR/IL-2-PBL showed significantly higher antitumor effects than CIR-PBL. The number of tumor-infiltrating natural killer (NK) cells was significantly increased in IL-2-PBL and CIR/IL-2-PBL. After NK cell depletion, IL-2-PBL showed significantly lower antitumor effects than CIR/IL-2-PBL. These results suggest that transfer of IL-2 RNA to CIR-PBL can promote NK cell infiltration of tumors and prolong survival of infused PBLs in vivo. RNA electroporated PBLs may represent efficient tools for delivery of functional molecules to tumors by multiple gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. June CH . Adoptive T cell therapy for cancer in the clinic. J Clin Invest 2007; 117: 1466–1476.

    Article  CAS  Google Scholar 

  2. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002; 25: 15840–15842.

    Google Scholar 

  3. Cho HI, Hong YS, Lee MA, Kim EK, Yoon SH, Kim CC et al. Adoptive transfer of Epstein–Barr virus-specific cytotoxic T-lymphocytes for the treatment of angiocentric lymphomas. Int J Hematol 2006; 83: 66–73.

    Article  Google Scholar 

  4. Roskrow MA, Suzuki N, Gan Y, Sixbey JW, Ng CY, Kimbrough S et al. Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood 1998; 91: 2925–2934.

    CAS  PubMed  Google Scholar 

  5. Stephan MT, Ponomarev V, Brentjens RJ, Chang AH, Dobrenkov KV, Heller G et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med 2007; 13: 1440–1449.

    Article  CAS  Google Scholar 

  6. Xue S, Gillmore R, Downs A, Tsallios A, Holler A, Gao L et al. Exploiting T cell receptor genes for cancer immunotherapy. Clin Exp Immunol 2005; 139: 167–172.

    Article  CAS  Google Scholar 

  7. Gattinoni L, Powell Jr DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    Article  CAS  Google Scholar 

  8. Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kämpgen E et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Therapy 2009; 16: 596–604.

    Article  CAS  Google Scholar 

  9. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY et al. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 2009; 16: 489–497.

    Article  CAS  Google Scholar 

  10. Eshhar Z, Waks T, Bendavid A, Schindler DG . Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 2001; 248: 67–76.

    Article  CAS  Google Scholar 

  11. Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM et al. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J Immunol 2002; 169: 5780–5786.

    Article  CAS  Google Scholar 

  12. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007; 117: 2197–2204.

    Article  CAS  Google Scholar 

  13. Ambade A, Mulherkar R . Adoptive T cell transfer augments IL-2 mediated tumour regression in a HNSCC xenograft nude mouse model. Cancer Lett 2008; 272: 316–324.

    Article  CAS  Google Scholar 

  14. Smith KA . Interleukin-2: inception, impact, and implications. Science 1988; 240: 1169–1176.

    Article  CAS  Google Scholar 

  15. Dunne J, Lynch S, O'Farrelly C, Todryk S, Hegarty JE, Feighery C et al. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J Immunol 2001; 167: 3129–3138.

    Article  CAS  Google Scholar 

  16. Klingemann HG, Martinson J . Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 2004; 6: 15–22.

    Article  Google Scholar 

  17. Den Otter W, Jacobs JJ, Battermann JJ, Hordijk GJ, Krastev Z, Moiseeva EV et al. Local therapy of cancer with free IL-2. Cancer Immunol Immunother 2008; 57: 931–950.

    Article  Google Scholar 

  18. Schadendorf D, Algarra SM, Bastholt L, Cinat G, Dreno B, Eggermont AM et al. Immunotherapy of distant metastatic disease. Ann Oncol 2009; 20: 41–50.

    Article  Google Scholar 

  19. Tsao H, Atkins MB, Sober AJ . Management of cutaneous melanoma. N Engl J Med 2004; 351: 2770–2771.

    Article  Google Scholar 

  20. Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther 2008; 19: 496–510.

    Article  CAS  Google Scholar 

  21. Jacobs JJ, Hordijk GJ, Jürgenliemk-Schulz IM, Terhaard CH, Koten JW, Battermann JJ et al. Treatment of stage III-IV nasopharyngeal carcinomas by external beam irradiation and local low doses of IL-2. Cancer Immunol Immunother 2005; 54: 792–798.

    Article  CAS  Google Scholar 

  22. Maas RA, Van Weering DH, Dullens HF, Den Otter W . Intratumoral low-dose interleukin-2 induces rejection of distant solid tumour. Cancer Immunol Immunother 1991; 33: 389–394.

    Article  CAS  Google Scholar 

  23. Yoon SH, Lee JM, Woo SJ, Park MJ, Park JS, Kim HS et al. Transfer of Her-2/neu specificity into cytokine-induced killer (CIK) cells with RNA encoding chimeric immune receptor (CIR). J Clin Immunol 29: 806–814.

    Article  CAS  Google Scholar 

  24. Baum C, Kustikova O, Modlich U, Li Z, Fehse B . Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006; 17: 253–263.

    Article  CAS  Google Scholar 

  25. Gaffen SL, Liu KD . Overview of interleukin-2 function, production and clinical applications. Cytokine 2004; 28: 109–123.

    Article  CAS  Google Scholar 

  26. Slos P, De Meyer M, Leroy P, Rousseau C, Acres B . Immunotherapy of established tumors in mice by intratumoral injection of an adenovirus vector harboring the human IL-2 cDNA: induction of CD8+ T-cell immunity and NK activity. Cancer Gene Ther 2001; 8: 321–332.

    Article  CAS  Google Scholar 

  27. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397–403.

    Article  CAS  Google Scholar 

  28. Kim EJ, Cho D, Hwang SY, Kim TS . Interleukin-2 fusion protein with anti-CD3 single-chain Fv (sFv) selectively protects T cells from dexamethasone-induced apoptosis. Vaccine 2001; 20: 608–615.

    Article  CAS  Google Scholar 

  29. Liu K, Rosenberg SA . Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 2001; 167: 6356–6365.

    Article  CAS  Google Scholar 

  30. Marks-Konczalik J, Dubois S, Losi JM, Sabzevari H, Yamada N, Feigenbaum L et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97: 11445–11450.

    Article  CAS  Google Scholar 

  31. Waldmann TA . The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6: 595–601.

    Article  CAS  Google Scholar 

  32. Zambricki E, Shigeoka A, Kishimoto H, Sprent J, Burakoff S, Carpenter C et al. Signaling T-cell survival and death by IL-2 and IL-15. Am J Transplant 2005; 5: 2623–2631.

    Article  CAS  Google Scholar 

  33. Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA . Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175: 7226–7234.

    Article  CAS  Google Scholar 

  34. Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM . Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood 2001; 98: 597–603.

    Article  CAS  Google Scholar 

  35. Teng MW, Kershaw MH, Moeller M, Smyth MJ, Darcy PK . Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum Gene Ther 2004; 15: 699–708.

    Article  CAS  Google Scholar 

  36. Moeller M, Haynes NM, Kershaw MH, Jackson JT, Teng MW, Street SE et al. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood 2005; 106: 2995–3003.

    Article  CAS  Google Scholar 

  37. Ferber D . Gene therapy: safer and virus-free? Science 2001; 294: 1638–1642.

    Article  CAS  Google Scholar 

  38. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  39. Nienhuis AW, Dunbar CE, Sorrentino BP . Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 2006; 13: 1031–1049.

    Article  CAS  Google Scholar 

  40. Breckpot K, Heirman C, Neyns B, Thielemans K . Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J Gene Med 2004; 6: 1175–1188.

    Article  CAS  Google Scholar 

  41. Kyte JA, Gaudernack G . Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother 2006; 55: 1432–1442.

    Article  CAS  Google Scholar 

  42. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  Google Scholar 

  43. Schaft N, Dörrie J, Müller I, Beck V, Baumann S, Schunder T et al. A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunol Immunother 2006; 55: 1132–1141.

    Article  CAS  Google Scholar 

  44. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 2006; 13: 151–159.

    Article  CAS  Google Scholar 

  45. Yu J, Wei M, Becknell B, Trotta R, Liu S, Boyd Z et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 2006; 24: 575–590.

    Article  CAS  Google Scholar 

  46. Yui MA, Hernández-Hoyos G, Rothenberg EV . A new regulatory region of the IL-2 locus that confers position-independent transgene expression. J Immunol 2001; 166: 1730–1739.

    Article  CAS  Google Scholar 

  47. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106: 3360–3365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Philip K Darcy for kindly providing retroviral vector encoding anti-Her-2/neu CIR. This study was supported by a grant of the Korea Health 21R&D Project, Ministry of Health and Welfare, Republic of Korea (A040018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T-G Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Yoon, S., Kim, HS. et al. Direct and indirect antitumor effects by human peripheral blood lymphocytes expressing both chimeric immune receptor and interleukin-2 in ovarian cancer xenograft model. Cancer Gene Ther 17, 742–750 (2010). https://doi.org/10.1038/cgt.2010.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.30

Keywords

This article is cited by

Search

Quick links