Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The soluble fragment of VE-cadherin inhibits angiogenesis by reducing endothelial cell proliferation and tube capillary formation

Abstract

Vascular endothelial-specific cadherin (VE-cadherin) is an endothelial cell-specific adhesion molecule, localized at cell–cell contact sites. It is involved in physiological and pathological angiogenesis. In this study, we showed that in vitro a soluble N-terminal fragment of VE-cadherin (EC1–3) corresponding to cadherin 1–3 ectodomains inhibited vascular endothelial growth factor-stimulated endothelial cell proliferation and capillary tube structure formation in the matrigel model. In vivo, EC1–3 was tested in a murine colon cancer model. EC1–3-expressing colon cancer C51 cells were subcutaneously grafted into nude mice, and tumor growth and angiogenesis were evaluated. At day 33, the mean volume of the tumors developed was reduced (510±104 versus 990±120 mm3 for control). Similarly, injection of EC1–3 virus-producing cells into established C51 tumors resulted in an inhibition by 33% of tumor growth. Immunohistological staining of vessels on tumor sections showed a significantly reduced intratumoral angiogenesis. Furthermore, EC1–3 did not induce vessel injury in the lung, liver, spleen, heart and brain in the mice. These results suggest that the soluble N-terminal fragment of VE-cadherin EC1–3 could exert an antitumoral effect by targeting tumor angiogenesis, which included blocking endothelial cell proliferation and capillary tube formation with no obvious toxicity on normal organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CD31 (PECAM-1):

platelet-endothelial cell adhesion molecule 1

CPAE:

calf pulmonary aortic endothelial cell

EC1–3:

N-terminal fragment of VE-cadherin corresponding to cadherin ectodomains 1–3

GFP:

green fluorescent protein

HMEC-1:

human microvascular endothelial cell line

HUVEC:

human umbilical venous endothelial cell

IRES:

internal ribosome entry site

VEGF:

vascular endothelial growth factor

References

  1. Liao F, Doody JF, Overholser J, Finnerty B, Bassi R, Wu Y et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res 2002; 62: 2567–2575.

    CAS  PubMed  Google Scholar 

  2. Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J et al. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 1995; 15: 1229–1239.

    Article  CAS  Google Scholar 

  3. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147–157.

    Article  CAS  Google Scholar 

  4. Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D et al. Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 1996; 98: 886–893.

    Article  CAS  Google Scholar 

  5. Dejana E . Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 1997; 100: S7–10.

    CAS  PubMed  Google Scholar 

  6. Heimark RL, Schwartz SM . The role of membrane-membrane interactions in the regulation of endothelial cell growth. J Cell Biol 1985; 100: 1934–1940.

    Article  CAS  Google Scholar 

  7. Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 2001; 97: 1679–1684.

    Article  CAS  Google Scholar 

  8. Gory S, Dalmon J, Prandini MH, Kortulewski T, de Launoit Y, Huber P . Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem 1998; 273: 6750–6755.

    Article  CAS  Google Scholar 

  9. Hulsken J, Behrens J, Birchmeier W . Tumor-suppressor gene products in cell contacts: the cadherin-APC-armadillo connection. Curr Opin Cell Biol 1994; 6: 711–716.

    Article  CAS  Google Scholar 

  10. Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U et al. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996; 87: 630–641.

    CAS  PubMed  Google Scholar 

  11. Suzuki S, Sano K, Tanihara H . Diversity of the cadherin family: evidence for eight new cadherins in nervous tissue. Cell Regul 1991; 2: 261–270.

    Article  CAS  Google Scholar 

  12. Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 1995; 129: 203–217.

    Article  CAS  Google Scholar 

  13. Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E . Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270: 30965–30972.

    Article  CAS  Google Scholar 

  14. Herren B, Levkau B, Raines EW, Ross R . Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 1998; 9: 1589–1601.

    Article  CAS  Google Scholar 

  15. Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci USA 2002; 99: 9462–9467.

    Article  CAS  Google Scholar 

  16. Lampugnani MG, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 2003; 161: 793–804.

    Article  CAS  Google Scholar 

  17. Dejana E . Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 2004; 5: 261–270.

    Article  CAS  Google Scholar 

  18. Corada L, Zanetta F, Orsenigo F, Breviario MG, Lampugnani S, Bernasconi F et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 2002; 100: 905–911.

    Article  CAS  Google Scholar 

  19. Li H, Lu H, Griscelli F, Opolon P, Sun LQ, Ragot T et al. Adenovirus-mediated delivery of a uPA/uPAR antagonist suppresses angiogenesis-dependent tumor growth and dissemination in mice. Gene Therapy 1998; 5: 1105–1113.

    Article  CAS  Google Scholar 

  20. Li H, Lindenmeyer F, Grenet C, Opolon P, Menashi S, Soria C et al. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther 2001; 12: 515–526.

    Article  CAS  Google Scholar 

  21. Weidner N, Semple JP, Welch WR, Folkman J . Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.

    Article  CAS  Google Scholar 

  22. Mekid H, Mir LM . In vivo cell electrofusion. Biochim Biophys Acta 2000; 1524: 118–130.

    Article  CAS  Google Scholar 

  23. Lenz HJ . Antiangiogenic agents in cancer therapy. Oncology (Williston Park) 2005; 19 (4 Suppl 3): 17–25.

    Google Scholar 

  24. Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC . Drug insight: vascular disrupting agents and angiogenesis—novel approaches for drug delivery. Nat Clin Pract Oncol 2006; 3: 682–692.

    Article  CAS  Google Scholar 

  25. Waxman DJ . Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 2008; 7: 3670–3684.

    Article  Google Scholar 

  26. Bergers G, Hanahan D . Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8: 592–603.

    Article  CAS  Google Scholar 

  27. Liao F, Li Y, O’Connor W, Zanetta L, Bassi R, Santiago A et al. Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res 2000; 60: 6805–6810.

    CAS  PubMed  Google Scholar 

  28. Shi XY, Lu H, Li WL, Tang HL, Xiong JJ, Zhang JQ et al. A soluble truncated cadherin induces breast cancer cell apoptosis and growth inhibition. J Cancer Res Clin Oncol 2006; 132: 561–571.

    Article  CAS  Google Scholar 

  29. Rahimi N, Kazlauskas A . A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol Biol Cell 1999; 10: 3401–3407.

    Article  CAS  Google Scholar 

  30. Cavallaro U, Liebner S, Dejana E . Endothelial cadherins and tumor angiogenesis. Exp Cell Res 2006; 312: 659–667.

    Article  CAS  Google Scholar 

  31. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E . Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 2006; 174: 593–604.

    Article  CAS  Google Scholar 

  32. Tang FY, Nguyen N, Meydani M . Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of Akt molecule. Int J Cancer 2003; 106: 871–878.

    Article  CAS  Google Scholar 

  33. Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K et al. Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 2005; 115: 2992–3006.

    Article  CAS  Google Scholar 

  34. Matsumura T, Wolff K, Petzelbauer P . Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J Immunol 1997; 158: 3408–3416.

    CAS  PubMed  Google Scholar 

  35. Yang S, Graham J, Kahn JW, Schwartz EA, Gerritsen ME . Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol 1999; 155: 887–895.

    Article  CAS  Google Scholar 

  36. Menon C, Ghartey A, Canter R, Feldman M, Fraker DL . Tumor necrosis factor-alpha damages tumor blood vessel integrity by targeting VE-cadherin. Ann Surg 2006; 244: 781–791.

    Article  Google Scholar 

  37. Rodriguez SK, Guo W, Liu L, Band MA, Paulson EK, Meydani M . Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer 2006; 118: 1635–1644.

    Article  CAS  Google Scholar 

  38. Zanetta L, Corada M, Grazia Lampugnani M, Zanetti A, Breviario F et al. Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. Thromb Haemost 2005; 93: 1041–1046.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to F Larbret and Cathrine Buguet for assistance with cell sorting. We thank Patrice Ardouin (IGR, Villejuif) for animal care, and Lorna Saint-Ange for editing (IGR, Villejuif). We also thank l’Institut de Cancer (INCA PL06_130) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Shi, X., Liu, J. et al. The soluble fragment of VE-cadherin inhibits angiogenesis by reducing endothelial cell proliferation and tube capillary formation. Cancer Gene Ther 17, 700–707 (2010). https://doi.org/10.1038/cgt.2010.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.26

Keywords

This article is cited by

Search

Quick links