Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immune response to vaccination with DNA-hsp65 in a phase I clinical trial with head and neck cancer patients

Abstract

DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine's potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 μg naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-γ (IFN-γ) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-γ responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hightower LE . Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991; 66: 191–197.

    Article  CAS  Google Scholar 

  2. Hartl FU, Hayer-Hartl M . Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002; 295: 1852–1858.

    Article  CAS  Google Scholar 

  3. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H . Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999; 162: 3212–3219.

    CAS  PubMed  Google Scholar 

  4. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL . Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8: 657–665.

    Article  CAS  Google Scholar 

  5. Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB . Vaccination against tuberculosis by DNA injection. Nat Med 1996; 2: 888–892.

    Article  CAS  Google Scholar 

  6. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 1999; 400: 269–271.

    Article  CAS  Google Scholar 

  7. Lukacs KV, Nakakes A, Atkins CJ, Lowrie DB, Colston MJ . In vivo gene therapy of malignant tumours with heat shock protein-65 gene. Gene Therapy 1997; 4: 346–350.

    Article  CAS  Google Scholar 

  8. Michaluart P, Abdallah KA, Lima FD, Smith R, Moysés RA, Coelho V et al. Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck. Cancer Gene Ther 2008; 15: 676–684.

    Article  CAS  Google Scholar 

  9. De Graeff-Meeder ER, van der Zee R, Rijkers GT, Schuurman HJ, Kuis W, Bijlsma JW et al. Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet 1991; 337: 1368–1372.

    Article  CAS  Google Scholar 

  10. Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G . Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 1993; 142: 1927–1937.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR . T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 1999; 12: 121–129.

    Article  CAS  Google Scholar 

  12. Mayr M, Metzler B, Kiechl S, Willeit J, Schett G, Xu Q et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 1999; 99: 1560–1566.

    Article  CAS  Google Scholar 

  13. Aida Y, Pabst MJ . Removal of endotoxin from protein solutions by phase separation using Triton X-114. J Immunol Methods 1990; 132: 191–195.

    Article  CAS  Google Scholar 

  14. Caldas C, Luna E, Spadafora-Ferreira M, Porto G, Iwai LK, Oshiro SE et al. Cellular autoreactivity against heat shock protein 60 in renal transplant patients: peripheral and graft-infiltrating responses. Clin Exp Immunol 2006; 146: 66–75.

    Article  CAS  Google Scholar 

  15. Granja C, Moliterno RA, Ferreira MS, Fonseca JA, Kalil J, Coelho V . T-cell autoreactivity to Hsp in human transplantation may involve both proinflammatory and regulatory functions. Hum Immunol 2004; 65: 124–134.

    Article  CAS  Google Scholar 

  16. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92: 205–216.

    Article  CAS  Google Scholar 

  17. Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgönne H, Kimman TG . Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin 2006; 2: 45–53.

    Article  CAS  Google Scholar 

  18. Ulmer JB, Wahren B, Liu MA . Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 2006; 12: 216–222.

    Article  CAS  Google Scholar 

  19. Liu MA, Wahren B, Karlsson Hedestam GB . DNA vaccines: recent developments and future possibilities. Hum Gene Ther 2006; 17: 1051–1061.

    Article  CAS  Google Scholar 

  20. Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S et al. Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 2001; 69: 7349–7355.

    Article  CAS  Google Scholar 

  21. Ellner JJ, Hirsch CS, Whalen CC . Correlates of protective immunity to Mycobacterium tuberculosis in humans. Clin Infect Dis 2000; 3 (Suppl 30): S279–S282.

    Article  Google Scholar 

  22. Lalvani A, Pathan AA, Durkan H, Wilkinson KA, Whelan A, Deeks JJ et al. Enhanced contact tracing and spatial tracking of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Lancet 2001; 357: 2017–2021.

    Article  CAS  Google Scholar 

  23. Murshid A, Gong J, Calderwood SK . Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Rev Vaccines 2008; 7: 1019–1030.

    Article  CAS  Google Scholar 

  24. Whiteside TL . Immunobiology of head and neck cancer. Cancer Metastasis Rev 2005; 24: 95–105.

    Article  CAS  Google Scholar 

  25. Jarnicki AG, Lysaght J, Todryk S, Mills KH . Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 2006; 177: 896–904.

    Article  CAS  Google Scholar 

  26. Bonato VL, Lima VM, Tascon RE, Lowrie DB, Silva CL . Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis-infected mice. Infect Immun 1998; 66: 169–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonato VL, Gonçalves ED, Soares EG, Santos Júnior RR, Sartori A, Coelho-Castelo AA et al. Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis: activation of CD8+ cells, interferon-gamma recovery and reduction of lung injury. Immunology 2004; 113: 130–138.

    Article  CAS  Google Scholar 

  28. Santos Júnior RR, Sartori A, Bonato VL, Coelho Castelo AA, Vilella CA, Zollner RL et al. Immune modulation induced by tuberculosis DNA vaccine protects non-obese diabetic mice from diabetes progression. Clin Exp Immunol 2007; 149: 570–578.

    Article  Google Scholar 

  29. Santos-Junior RR, Sartori A, De Franco M, Filho OG, Coelho-Castelo AA, Bonato VL et al. Immunomodulation and protection induced by DNA-hsp65 vaccination in an animal model of arthritis. Hum Gene Ther 2005; 16: 1338–1345.

    Article  CAS  Google Scholar 

  30. van Eden W, Holoshitz J, Nevo Z, Frenkel A, Klajman A, Cohen IR . Arthritis induced by a T-lymphocyte clone that responds to Mycobacterium tuberculosis and to cartilage proteoglycans. Proc Natl Acad Sci USA 1985; 82: 5117–5120.

    Article  CAS  Google Scholar 

  31. van Eden W, Thole JE, van der Zee R, Noordzij A, van Embden JD, Hensen EJ et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 1988; 331: 171–173.

    Article  CAS  Google Scholar 

  32. van Eden W, van der Zee R, Prakken B . Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 2005; 5: 318–330.

    Article  CAS  Google Scholar 

  33. Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR . Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci USA 1990; 87: 1576–1580.

    Article  CAS  Google Scholar 

  34. Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 1992; 12: 789–799.

    Article  CAS  Google Scholar 

  35. Sekaly RP . The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med 2008; 205: 7–12.

    Article  CAS  Google Scholar 

  36. Watkins DI, Burton DR, Kallas EG, Moore JP, Koff WC . Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 2008; 14: 617–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Victora, G., Socorro-Silva, A., Volsi, E. et al. Immune response to vaccination with DNA-hsp65 in a phase I clinical trial with head and neck cancer patients. Cancer Gene Ther 16, 598–608 (2009). https://doi.org/10.1038/cgt.2009.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.9

Keywords

This article is cited by

Search

Quick links