Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer

Abstract

Fusogenic membrane glycoproteins (FMGs) are viral envelope proteins, which bind surface receptors and induce fusion of the cell membrane. An FMG-transfected cell will fuse with neighbor cells, thus forming syncytia that die within 5 days. In this report, plasmids encoding for FMGs from Human Endogenous Retrovirus-W (HERV-W) was compared with Gibbon Ape Leukemia Virus (GALV) and feline endogenous virus RD-114 (RD). These plasmids were transfected in human non-small-cell lung cancer (NSCLC) cells in vitro or directly injected into tumors in mice. All FMGs induced the formation of syncytia containing around 50 cells. HERV-W or GALV FMGs decreased up to 80% of cell viability in vitro and inhibited tumor growth in vivo (60–70% reduction). In contrast, RD FMG was not efficient. Apoptosis played a role in the death of the syncytia, but addition of the caspase inhibitor Z-VAD-fmk had no effect, suggesting that apoptosis is not the only mechanism responsible for FMG-induced cell death. Altogether, our results demonstrate that even at very low transfection efficiency, the antitumor activity of HERV-W FMG is as effective as that of GALV in vitro and in vivo for the treatment of human lung tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Higuchi H, Bronk SF, Bateman A, Harrington K, Vile RG, Gores GJ . Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy. Cancer Res 2000; 60: 6396–6402.

    CAS  PubMed  Google Scholar 

  2. Fielding AK, Chapel-Fernandes S, Chadwick MP, Bullough FJ, Cosset FL, Russell SJ . A hyperfusogenic gibbon ape leukemia envelope glycoprotein: targeting of a cytotoxic gene by ligand display. Hum Gene Ther 2000; 11: 817–826.

    Article  CAS  Google Scholar 

  3. Bateman A, Bullough F, Murphy S, Emiliusen L, Lavillette D, Cosset FL et al. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res 2000; 60: 1492–1497.

    CAS  PubMed  Google Scholar 

  4. Diaz RM, Bateman A, Emiliusen L, Fielding A, Trono D, Russell SJ et al. A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy. Gene Ther 2000; 7: 1656–1663.

    Article  CAS  Google Scholar 

  5. Zhang J, Frolov I, Russell SJ . Gene therapy for malignant glioma using Sindbis vectors expressing a fusogenic membrane glycoprotein. J Gene Med 2004; 6: 1082–1091.

    Article  CAS  Google Scholar 

  6. Allen C, McDonald C, Giannini C, Peng KW, Rosales G, Russell SJ et al. Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas. J Gene Med 2004; 6: 1216–1227.

    Article  CAS  Google Scholar 

  7. Galanis E, Bateman A, Johnson K, Diaz RM, James CD, Vile R et al. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther 2001; 12: 811–821.

    Article  CAS  Google Scholar 

  8. Fu X, Tao L, Jin A, Vile R, Brenner MK, Zhang X . Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral antitumor effect. Mol Ther 2003; 7: 748–754.

    Article  CAS  Google Scholar 

  9. Ahmed A, Jevremovic D, Suzuki K, Kottke T, Thompson J, Emery S et al. Intratumoral expression of a fusogenic membrane glycoprotein enhances the efficacy of replicating adenovirus therapy. Gene Ther 2003; 10: 1663–1671.

    Article  CAS  Google Scholar 

  10. Ebert O, Shinozaki K, Kournioti C, Park MS, Garcia-Sastre A, Woo SL . Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res 2004; 64: 3265–3270.

    Article  CAS  Google Scholar 

  11. Simpson GR, Han Z, Liu B, Wang Y, Campbell G, Coffin RS . Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control. Cancer Res 2006; 66: 4835–4842.

    Article  CAS  Google Scholar 

  12. Hoffmann D, Wildner O . Enhanced killing of pancreatic cancer cells by expression of fusogenic membrane glycoproteins in combination with chemotherapy. Mol Cancer Ther 2006; 5: 2013–2022.

    Article  CAS  Google Scholar 

  13. Bateman AR, Harrington KJ, Kottke T, Ahmed A, Melcher AA, Gough MJ et al. Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigens by dendritic cells. Cancer Res 2002; 62: 6566–6578.

    CAS  PubMed  Google Scholar 

  14. Errington F, Bateman A, Kottke T, Thompson J, Harrington K, Merrick A et al. Allogeneic tumor cells expressing fusogenic membrane glycoproteins as a platform for clinical cancer immunotherapy. Clin Cancer Res 2006; 12: 1333–1341.

    Article  CAS  Google Scholar 

  15. Linardakis E, Bateman A, Phan V, Ahmed A, Gough M, Olivier K et al. Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Res 2002; 62: 5495–5504.

    CAS  PubMed  Google Scholar 

  16. Cheynet V, Ruggieri A, Oriol G, Blond JL, Boson B, Vachot L et al. Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J Virol 2005; 79: 5585–5593.

    Article  CAS  Google Scholar 

  17. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000; 403: 785–789.

    Article  CAS  Google Scholar 

  18. Blond JL, Beseme F, Duret L, Bouton O, Bedin F, Perron H et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 1999; 73: 1175–1185.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tailor CS, Nouri A, Zhao Y, Takeuchi Y, Kabat D . A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J Virol 1999; 73: 4470–4474.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rasko JE, Battini JL, Gottschalk RJ, Mazo I, Miller AD . The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc Natl Acad Sci USA 1999; 96: 2129–2134.

    Article  CAS  Google Scholar 

  21. van Zeijl M, Johann SV, Closs E, Cunningham J, Eddy R, Shows TB et al. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci USA 1994; 91: 1168–1172.

    Article  CAS  Google Scholar 

  22. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA . The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem 1994; 269: 25426–25431.

    CAS  PubMed  Google Scholar 

  23. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 1994; 91: 7071–7075.

    Article  CAS  Google Scholar 

  24. Yang C, Compans RW . Analysis of the murine leukemia virus R peptide. delineation of the molecular determinants which are important for its fusion inhibition activity. J Virol 1997; 71: 8490–8496.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang C, Compans RW . Analysis of the cell fusion activities of chimeric simian immunodeficiency virus-murine leukemia virus envelope proteins: inhibitory effects of the R peptide. J Virol 1996; 70: 248–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Coll JL, Negoescu A, Louis N, Sachs L, Tenaud C, Girardot V et al. Antitumor activity of bax and p53 naked gene transfer in lung cancer: in vitro and in vivo analysis. Hum Gene Ther 1998; 9: 2063–2074.

    Article  CAS  Google Scholar 

  27. Zavaglia D, Favrot MC, Eymin B, Tenaud C, Coll JL . Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27–VP22 fusion protein. Gene Ther 2003; 10: 314–325.

    Article  CAS  Google Scholar 

  28. Zavaglia D, Lin EH, Guidetti M, Pluquet O, Hainaut P, Favrot MC et al. Poor intercellular transport and absence of enhanced antiproliferative activity after non-viral gene transfer of VP22–P53 or P53–VP22 fusions into p53 null cell lines in vitro or in vivo. J Gene Med 2005; 7: 936–944.

    Article  CAS  Google Scholar 

  29. Elliott G, O'Hare P . Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88: 223–233.

    Article  CAS  Google Scholar 

  30. Roy V, Qiao J, de Campos-Lima P, Caruso M . Direct evidence for the absence of intercellular trafficking of VP22 fused to GFP or to the herpes simplex virus thymidine kinase. Gene Ther 2005; 12: 169–176.

    Article  CAS  Google Scholar 

  31. Elliott G, O'Hare P . Intercellular trafficking of VP22–GFP fusion proteins. Gene Ther 1999; 6: 149–151.

    Article  CAS  Google Scholar 

  32. Dilber MS, Phelan A, Aints A, Mohamed AJ, Elliott G, Smith CI et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther 1999; 6: 12–21.

    Article  CAS  Google Scholar 

  33. Phelan A, Elliott G, O'Hare P . Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998; 16: 440–443.

    Article  CAS  Google Scholar 

  34. Fang B, Xu B, Koch P, Roth JA . Intercellular trafficking of VP22–GFP fusion proteins is not observed in cultured mammalian cells. Gene Ther 1998; 5: 1420–1424.

    Article  CAS  Google Scholar 

  35. Lemken ML, Wolf C, Wybranietz WA, Schmidt U, Smirnow I, Buhring HJ et al. Evidence for intercellular trafficking of VP22 in living cells. Mol Ther 2007; 15: 310–319.

    Article  CAS  Google Scholar 

  36. Rainov NG . A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11: 2389–2401.

    Article  CAS  Google Scholar 

  37. Harsh GR, Deisboeck TS, Louis DN, Hilton J, Colvin M, Silver JS et al. Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J Neurosurg 2000; 92: 804–811.

    Article  CAS  Google Scholar 

  38. Groskreutz DJ, Monick MM, Yarovinsky TO, Powers LS, Quelle DE, Varga SM et al. Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J Immunol 2007; 179: 2741–2747.

    Article  CAS  Google Scholar 

  39. Eckardt-Michel J, Lorek M, Baxmann D, Grunwald T, Keil GM, Zimmer G . The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 2008; 82: 3236–3249.

    Article  CAS  Google Scholar 

  40. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008; 14: 949–953.

    Article  CAS  Google Scholar 

  41. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176: 231–241.

    Article  CAS  Google Scholar 

  42. von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008; 111: 3070–3080.

    Article  Google Scholar 

  43. Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D . The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 2002; 76: 6442–6452.

    Article  CAS  Google Scholar 

  44. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 2000; 74: 3321–3329.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Santé Et de la Recherche Médicale (INSERM), The University Joseph Fourier, the Institut National du Cancer (INCA), the Cancéropôle Lyon-Rhône-Alpes-Auvergne (CLARA), the Association for Research on Cancer (ARC, France), the Agence Nationale pour la Recherche (ANR) and the Region Rhône-Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-L Coll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, EH., Salon, C., Brambilla, E. et al. Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene Ther 17, 256–265 (2010). https://doi.org/10.1038/cgt.2009.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.74

Keywords

This article is cited by

Search

Quick links