Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis

Abstract

It has been shown that interleukin 18 (IL-18) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-18 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-18 (ZD55-IL-18) was constructed by insertion of an IL-18 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. It has been shown that ZD55-IL-18 exerted a strong cytopathic effect and significant apoptosis in tumor cells. ZD55-IL-18 significantly decreased vascular endothelial growth factor and CD34 expression in the melanoma cells. Treatment of established tumors with ZD55-IL-18 showed much stronger antitumor activity than that induced by ZD55-EGFP (enhanced green fluorescent protein) or Ad-IL-18. These data indicated that oncolytic adenovirus expressing IL-18 could exert potential antitumor activity through inhibition of angiogenesis and offer a novel approach to melanoma therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

EGFP:

enhanced green fluorescent protein

IL-18:

interleukin 18

MOI:

multiplicity of infection

TUNEL:

TdT-mediated dUTP-biotin nick end-labeling assay

VEGF:

vascular endothelial growth factor

References

  1. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995; 378: 88–91.

    Article  CAS  Google Scholar 

  2. Smyth MJ, Taniguchi M, Street SE . The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 2000; 165: 2665–2670.

    Article  CAS  Google Scholar 

  3. Okamoto I, Kohno K, Tanimoto T, Ikegami H, Kurimoto M . Development of CD8+ effector T cells is differentially regulated by IL-18 and IL-12. J Immunol 1999; 162: 3202–3211.

    CAS  PubMed  Google Scholar 

  4. Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H . Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol 1996; 173: 230–235.

    Article  CAS  Google Scholar 

  5. Micallef MJ, Ohtsuki T, Kohno K, Tanabe F, Ushio S, Namba M et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur J Immunol 1996; 26: 1647–1651.

    Article  CAS  Google Scholar 

  6. Okano F, Yamada K . Canine interleukin-18 induces apoptosis and enhances Fas ligand mRNA expression in a canine carcinoma cell line. Anticancer Res 2000; 20: 3411–3415.

    CAS  PubMed  Google Scholar 

  7. Coughlin CM, Salhany KE, Wysocka M, Aruga E, Kurzawa H, Chang AE et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest 1998; 101: 1441–1452.

    Article  CAS  Google Scholar 

  8. Micallef MJ, Tanimoto T, Kohno K, Ikeda M . Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res 1997; 57: 4557–4563.

    CAS  PubMed  Google Scholar 

  9. Osaki T, Péron JM, Cai Q, Okamura H, Robbins PD, Kurimoto M et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol 1998; 160: 1742–1749.

    CAS  Google Scholar 

  10. Hashimoto W, Osaki T, Okamura H, Robbins PD, Kurimoto M, Nagata S et al. Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas–Fas ligand- and perforin-induced tumor apoptosis, respectively. J Immunol 1999; 163: 583–589.

    CAS  PubMed  Google Scholar 

  11. Wigginton JM, Lee JK, Wiltrout TA, Alvord WG, Hixon JA, Subleski J et al. Synergistic engagement of an ineffective endogenous anti-tumor immune response and induction of IFN-gamma and Fas-ligand-dependent tumor eradication by combined administration of IL-18 and IL-2. J Immunol 2002; 169: 4467–4474.

    Article  CAS  Google Scholar 

  12. Akamatsu S, Arai N, Hanaya T, Arai S, Tanimoto T, Fujii M et al. Antitumor activity of interleukin-18 against the murine T-cell leukemia/lymphoma EL-4 in syngeneic mice. J Immunother 2002; 25: S28–S34.

    Article  CAS  Google Scholar 

  13. Wang Q, Yu H, Ju DW, He L, Pan JP, Xia DJ et al. Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murine melanoma. Gene Ther 2001; 8: 542–550.

    Article  CAS  Google Scholar 

  14. Ju DW, Yang Y, Tao Q, Song WG, He L, Chen G et al. Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of antitumor immunity. Gene Ther 2000; 7: 1672–1679.

    Article  CAS  Google Scholar 

  15. Robertson MJ, Mier JW, Logan T, Atkins M, Koon H, Koch KM et al. Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin Cancer Res 2006; 12: 4265–4273.

    Article  CAS  Google Scholar 

  16. Motzer RJ, Rakhit A, Schwartz LH, Olencki T, Malone TM, Sandstrom K et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res 1998; 4: 1183–1191.

    CAS  PubMed  Google Scholar 

  17. Portielje JE, Kruit WH, Schuler M, Beck J, Lamers CH, Stoter G et al. Phase I study of subcutaneously administered recombinant human interleukin 12 in patients with advanced renal cell cancer. Clin Cancer Res 1999; 5: 3983–3989.

    CAS  PubMed  Google Scholar 

  18. Carson WE, Dierksheide JE, Jabbour S, Anghelina M, Bouchard P, Ku G et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction. Blood 2000; 96: 1465–1473.

    CAS  PubMed  Google Scholar 

  19. Osaki T, Hashimoto W, Gambotto A, Okamura H, Robbins PD, Kurimoto M et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor, interleukin-18 (IL-18). Gene Ther 1999; 6: 808–815.

    Article  CAS  Google Scholar 

  20. Dobbelstein M . Replicating adenoviruses in cancer therapy. Curr Top Microbiol Immunol 2004; 273: 291–334.

    CAS  PubMed  Google Scholar 

  21. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    Article  CAS  Google Scholar 

  22. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  Google Scholar 

  23. Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 2003; 95: 652–660.

    Article  CAS  Google Scholar 

  24. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned. Gene Ther 2001; 8: 89–98.

    Article  CAS  Google Scholar 

  25. Nemunaitis J, Cunningham C, Buchanan A, Blackburn A, Edelman G, Maples P et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 2001; 8: 746–759.

    Article  CAS  Google Scholar 

  26. Van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR . Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002; 62: 6165–6171.

    CAS  PubMed  Google Scholar 

  27. Wadler S, Yu B, Tan JY, Kaleya R, Rozenblit A, Makower D et al. Persistent replication of the modified chimeric adenovirus ONYX-015 in both tumor and stromal cells from a patient with gall bladder carcinoma implants. Clin Cancer Res 2003; 9: 33–43.

    CAS  PubMed  Google Scholar 

  28. Osaki T, Péron JM, Cai Q, Okamura H, Robbins PD, Kurimoto M et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol 1998; 160: 1742–1749.

    CAS  Google Scholar 

  29. Redondo P, Sánchez-Carpintero I, Bauzá A, Idoate M, Solano T, Mihm Jr MC . Immunologic escape and angiogenesis in human malignant melanoma. J Am Acad Dermatol 2003; 49: 255–263.

    Article  Google Scholar 

  30. Folkman J . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6.

    Article  CAS  Google Scholar 

  31. Rofstad EK, Halsør EF . Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 2000; 60: 4932–4938.

    CAS  PubMed  Google Scholar 

  32. Drevs J, Hofmann I, Hugenschmidt H, Wittig C, Madjar H, Müller M et al. Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 2000; 60: 4819–4824.

    CAS  PubMed  Google Scholar 

  33. Cao R, Farnebo J, Kurimoto M, Cao Y . Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J 1999; 13: 2195–2202.

    Article  CAS  Google Scholar 

  34. Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE . Evidence of IL-18 as a novel angiogenic mediator. J Immunol 2001; 167: 1644–1653.

    Article  CAS  Google Scholar 

  35. Cho ML, Jung YO, Moon YM, Min SY, Yoon CH, Lee SH et al. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett 2006; 103: 159–166.

    Article  CAS  Google Scholar 

  36. Kim J, Kim C, Kim TS, Bang SI, Yang Y, Park H et al. IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun 2006; 344: 1284–1289.

    Article  CAS  Google Scholar 

  37. Zhang Q, Nie M, Sham J, Su C, Xue H, Chua D et al. Effective gene-viral therapy for telomerase-positive cancers by selective replicative-competent adenovirus combining with endostatin gene. Cancer Res 2004; 64: 5390–5397.

    Article  CAS  Google Scholar 

  38. Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001; 61: 5453–5460.

    CAS  PubMed  Google Scholar 

  39. Micallef MJ, Yoshida K, Kawai S, Hanaya T, Kohno K, Arai S et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother 1997; 43: 361–367.

    Article  CAS  Google Scholar 

  40. Nguyen M, Branton PE, Roy S, Nicholson DW, Alnemri ES, Yeh WC et al. E1A-induced processing of procaspase-8 can occur independently of FADD and is inhibited by Bcl-2. J Biol Chem 1998; 273: 33099–33102.

    Article  CAS  Google Scholar 

  41. Querido E, Teodoro JG, Branton PE . Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis. J Virol 1997; 71: 3526–3533.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G et al. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006; 13: 1023–1032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by grants from the National Natural Science Foundation of China (No. 30700999), the Science and Technology Department of Jiangsu province (No. BK2006036) and the Program for New Century Excellent Talents in University (NCET-08-0700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-N Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, JN., Pei, DS., Mao, LJ. et al. Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther 17, 28–36 (2010). https://doi.org/10.1038/cgt.2009.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.38

Keywords

This article is cited by

Search

Quick links