Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Translational strategies exploiting TNF-α that sensitize tumors to radiation therapy

Abstract

TNFerade is a radioinducible adenoviral vector expressing tumor necrosis factor-α (TNF-α) (Ad.Egr-TNF) currently in a phase III trial for inoperable pancreatic cancer. We studied B16-F1 melanoma tumors in TNF receptor wild-type (C57BL/6) and deficient (TNFR1,2−/− and TNFR1−/−) mice. Ad.Egr-TNF+IR inhibited tumor growth compared with IR in C57BL/6 but not in receptor-deficient mice. Tumors resistant to TNF-α were also sensitive to Ad.Egr-TNF+IR in C57BL/6 mice. Ad.Egr-TNF+IR produced an increase in tumor-associated endothelial cell apoptosis not observed in receptor-deficient animals. Also, B16-F1 tumors in mice with germline deletions of TNFR1,2, TNFR1 or TNF-α, or in mice receiving anti-TNF-α exhibited radiosensitivity. These results show that tumor-associated endothelium is the principal target for Ad.Egr-TNF radiosensitization and implicate TNF-α signaling in tumor radiosensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ogawa K, Boucher Y, Kashiwagi S, Fukumura D, Chen D, Gerweck LE . Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res 2007; 67: 4016–4021.

    Article  CAS  Google Scholar 

  2. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–1159.

    Article  CAS  Google Scholar 

  3. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 2005; 8: 99–110.

    Article  CAS  Google Scholar 

  4. Gerweck LE, Vijayappa S, Kurimasa A, Ogawa K, Chen DJ . Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res 2006; 66: 8352–8355.

    Article  CAS  Google Scholar 

  5. Suit HD, Willers H . Comment on ‘Tumor response to radiotherapy regulated by endothelial cell apoptosis’ (I). Science 2003; 302: 1894; author reply 1894.

    Article  CAS  Google Scholar 

  6. Brown M, Bristow R, Glazer P, Hill R, McBride W, McKenna G et al. Comment on ‘Tumor response to radiotherapy regulated by endothelial cell apoptosis’ (II). Science 2003; 302: 1894; author reply 1894.

    Article  CAS  Google Scholar 

  7. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349: 427–434.

    Article  CAS  Google Scholar 

  8. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  CAS  Google Scholar 

  9. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007; 357: 2666–2676.

    Article  CAS  Google Scholar 

  10. Hallahan DE, Mauceri HJ, Seung LP, Dunphy EJ, Wayne JD, Hanna NN et al. Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1995; 1: 786–791.

    Article  CAS  Google Scholar 

  11. Chang KJ, Lee JG, Holcombe RF, Kuo J, Muthusamy R, Wu ML . Endoscopic ultrasound delivery of an antitumor agent to treat a case of pancreatic cancer. Nat Clin Pract Gastroenterol Hepatol 2008; 5: 107–111.

    Article  Google Scholar 

  12. Camphausen KA, Quezado M, Citrin D, Pingpank JF, Wood B, Alexander Jr HR et al. A pilot study of local injection of TNFerade biologic in addition in addition to neo-adjuvant chemoradiation for the treatment of primary and recurrent rectal cancer. ASCO Meeting Abstracts 2007; 25: 14585.

    Google Scholar 

  13. Senzer N, Mani S, Rosemurgy A, Nemunaitis J, Cunningham C, Guha C et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 2004; 22: 592–601.

    Article  CAS  Google Scholar 

  14. Mundt AJ, Vijayakumar S, Nemunaitis J, Sandler A, Schwartz H, Hanna N et al. A Phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res 2004; 10: 5747–5753.

    Article  CAS  Google Scholar 

  15. Posner M, Chang KJ, Rosemurgy A, Stephenson J, Khan M, Reid T et al. Multi-center phase II/III randomized controlled clinical trial using TNFerade combined with chemoradiation in patients with locally advanced pancreatic cancer (LAPC). ASCO Meeting Abstracts 2007; 25: 4518.

    Google Scholar 

  16. Old LJ . Tumor necrosis factor. Clin Bull 1976; 6: 118–120.

    CAS  PubMed  Google Scholar 

  17. Hoffmann MK, Oettgen HF, Old LJ, Mittler RS, Hammerling U . Induction and immunological properties of tumor necrosis factor. J Reticuloendothel Soc 1978; 23: 307–319.

    CAS  PubMed  Google Scholar 

  18. Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR et al. TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 2007; 117: 3833–3845.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G . Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006; 72: 1605–1621.

    Article  CAS  Google Scholar 

  20. Joseph IB, Isaacs JT . Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst 1998; 90: 1648–1653.

    Article  CAS  Google Scholar 

  21. Stoelcker B, Ruhland B, Hehlgans T, Bluethmann H, Luther T, Mannel DN . Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature. Am J Pathol 2000; 156: 1171–1176.

    Article  CAS  Google Scholar 

  22. Chen G, Goeddel DV . TNF-R1 signaling: a beautiful pathway. Science 2002; 296: 1634–1635.

    Article  CAS  Google Scholar 

  23. Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino Jr MA, Goeddel DV . The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA 1991; 88: 9292–9296.

    Article  CAS  Google Scholar 

  24. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–3670.

    Article  CAS  Google Scholar 

  25. Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone Jr MA . Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 1986; 83: 4533–4537.

    Article  CAS  Google Scholar 

  26. Shimomura K, Manda T, Mukumoto S, Kobayashi K, Nakano K, Mori J . Recombinant human tumor necrosis factor-alpha: thrombus formation is a cause of anti-tumor activity. Int J Cancer 1988; 41: 243–247.

    Article  CAS  Google Scholar 

  27. Spriggs DR, Sherman ML, Michie H, Arthur KA, Imamura K, Wilmore D et al. Recombinant human tumor necrosis factor administered as a 24-h intravenous infusion. A phase I and pharmacologic study. J Natl Cancer Inst 1988; 80: 1039–1044.

    Article  CAS  Google Scholar 

  28. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    Article  CAS  Google Scholar 

  29. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  Google Scholar 

  30. Katdare M, Efimova EV, Labay E, Khodarev NN, Darga TE, Garofalo M et al. Diverse TNFalpha-induced death pathways are enhanced by inhibition of NF-kappaB. Int J Oncol 2007; 31: 1519–1528.

    CAS  PubMed  Google Scholar 

  31. Lejeune F, Lienard D, Eggermont A, Schraffordt Koops H, Kroon B, Gerain J et al. Clinical experience with high-dose tumor necrosis factor alpha in regional therapy of advanced melanoma. Circ Shock 1994; 43: 191–197.

    CAS  PubMed  Google Scholar 

  32. Eggermont AM, Schraffordt Koops H, Lienard D, Kroon BB, van Geel AN, Hoekstra HJ et al. Isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-gamma and melphalan for nonresectable extremity soft tissue sarcomas: a multicenter trial. J Clin Oncol 1996; 14: 2653–2665.

    Article  CAS  Google Scholar 

  33. MacGill RS, Davis TA, Macko J, Mauceri HJ, Weichselbaum RR, King CR . Local gene delivery of tumor necrosis factor alpha can impact primary tumor growth and metastases through a host-mediated response. Clin Exp Metastasis 2007; 24: 521–531.

    Article  CAS  Google Scholar 

  34. MacEwan DJ . TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 2002; 14: 477–492.

    Article  CAS  Google Scholar 

  35. Biyasheva A . Expression data from control untreated mouse melanoma B16F1 cells, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4819, 2006.

  36. Biswas SK, Sica A, Lewis CE . Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 2008; 180: 2011–2017.

    Article  CAS  Google Scholar 

  37. Noonan DM, De Lerma Barbaro A, Vannini N, Mortara L, Albini A . Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 2008; 27: 31–40.

    Article  Google Scholar 

  38. Porta C, Subhra Kumar B, Larghi P, Rubino L, Mancino A, Sica A . Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 2007; 604: 67–86.

    Article  Google Scholar 

  39. Tomita Y, Yang X, Ishida Y, Nemoto-Sasaki Y, Kondo T, Oda M et al. Spontaneous regression of lung metastasis in the absence of tumor necrosis factor receptor p55. Int J Cancer 2004; 112: 927–933.

    Article  CAS  Google Scholar 

  40. Zhang M, Qian J, Xing X, Kong FM, Zhao L, Chen M et al. Inhibition of the tumor necrosis factor-{alpha} pathway is radioprotective for the lung. Clin Cancer Res 2008; 14: 1868–1876.

    Article  CAS  Google Scholar 

  41. Neta R, Oppenheim JJ, Schreiber RD, Chizzonite R, Ledney GD, MacVittie TJ . Role of cytokines (interleukin 1, tumor necrosis factor, and transforming growth factor beta) in natural and lipopolysaccharide- enhanced radioresistance. J Exp Med 1991; 173: 1177–1182.

    Article  CAS  Google Scholar 

  42. Mazzone M, Ruiz de Almodovar C, Carmeliet P . Building in resistance to endothelial cell death. Nat Genet 2007; 39: 1308–1309.

    Article  CAS  Google Scholar 

  43. Salama JK, Chmura SJ, Mehta N, Yenice KM, Stadler WM, Vokes EE et al. An initial report of a radiation dose escalation trial in patients with one to five sites of metastatic disease. Clin Cancer Res 2008; 14: 5255–5259.

    Article  CAS  Google Scholar 

  44. Rossol M, Meusch U, Pierer M, Kaltenhauser S, Hantzschel H, Hauschildt S et al. Interaction between transmembrane TNF and TNFR1/2 mediates the activation of monocytes by contact with T cells. J Immunol 2007; 179: 4239–4248.

    Article  CAS  Google Scholar 

  45. Wu H, Tschopp J, Lin SC . Smac mimetics and TNFalpha: a dangerous liaison? Cell 2007; 131: 655–658.

    Article  CAS  Google Scholar 

  46. Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 2008; 68: 1443–1450.

    Article  CAS  Google Scholar 

  47. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 2000; 343: 1594–1602.

    Article  CAS  Google Scholar 

  48. Wong VK, Lebwohl MG . Treatment of psoriatic arthritis with etanercept, a tumour necrosis factor antagonist. Expert Opin Biol Ther 2005; 5: 1505–1513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Shang Lin for statistical analyses and Samuel Luka for technical assistance. This research was funded by Grant CA111423 from the NCI, Ludwig Center for Metastasis Research, the Center for Radiation Therapy, and a gift from Mr and Mrs Vincent Foglia. Dr Weichselbaum and Dr Kufe have an interest in GenVec and are consultants to GenVec. Dr King is employed by GenVec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Weichselbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauceri, H., Beckett, M., Liang, H. et al. Translational strategies exploiting TNF-α that sensitize tumors to radiation therapy. Cancer Gene Ther 16, 373–381 (2009). https://doi.org/10.1038/cgt.2008.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.86

Keywords

This article is cited by

Search

Quick links