Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TNF-α and the IFN-γ-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma

Abstract

Interferon-γ-inducible protein 10 is a potent chemoattractant for natural killer cells and activated T lymphocytes. It also displays angiostatic properties and some antitumor activity. Tumor necrosis factor-α (TNF-α) is a powerful immunomodulating cytokine with demonstrated tumoricidal activity in various tumor models and the ability to induce strong immune responses. This prompted us to evaluate the antitumor effects of recombinant parvoviruses designed to deliver IP-10 or TNF-α into a glioblastoma. When Gl261 murine glioma cells were infected in vitro with an IP-10- or TNF-α-transducing parvoviral vector and were subcutaneously implanted in mice, tumor growth was significantly delayed. Complete tumor regression was observed when the glioma cells were coinfected with both the vectors, demonstrating synergistic antitumor activity. In an established in vivo glioma model, however, repeated simultaneous peritumoral injection of the IP-10- and TNF-α-delivering parvoviruses failed to improve the therapeutic effect as compared with the use of a single cytokine-delivering vector. In this tumor model, cytokine-mediated immunostimulation, rather than inhibition of vascularization, is likely responsible for the therapeutic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS et al. Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 1999; 91: 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  2. Burton EC, Prados MD . Malignant gliomas. Curr Treat Options Oncol 2000; 1: 459–468.

    Article  CAS  PubMed  Google Scholar 

  3. Fakhrai H, Dorigo O, Shawler DL, Lin H, Mercola D, Black KL et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 1996; 93: 2909–2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leach DR, Krummel MF, Allison JP . Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736.

    Article  CAS  PubMed  Google Scholar 

  5. Ehtesham M, Samoto K, Kabos P, Acosta FL, Gutierrez MA, Black KL et al. Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 2002; 9: 925–934.

    Article  CAS  PubMed  Google Scholar 

  6. Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A et al. Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 2007; 121: 1756–1763.

    Article  CAS  PubMed  Google Scholar 

  7. Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T et al. Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 2001; 50: 463–468.

    Article  CAS  PubMed  Google Scholar 

  8. Leon SP, Folkerth RD, Black PM . Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996; 77: 362–372.

    Article  CAS  PubMed  Google Scholar 

  9. Kargiotis O, Rao JS, Kyritsis AP . Mechanisms of angiogenesis in gliomas. J Neurooncol 2006; 78: 281–293.

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Finger C, Alvarez-Vallina L, Cichutek K, Buchholz CJ . Chronic gene delivery of interferon-inducible protein 10 through replication-competent retrovirus vectors suppresses tumor growth. Cancer Gene Ther 2005; 12: 900–912.

    Article  CAS  PubMed  Google Scholar 

  11. Chi A, Norden AD, Wen PY . Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2007; 7: 1537–1560.

    Article  CAS  PubMed  Google Scholar 

  12. Tuettenberg J, Friedel C, Vajkoczy P . Angiogenesis in malignant glioma—a target for antitumor therapy? Crit Rev Oncol Hematol 2006; 59: 181–193.

    Article  CAS  PubMed  Google Scholar 

  13. Lamszus K, Brockmann MA, Eckerich C, Bohlen P, May C, Mangold U et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin Cancer Res 2005; 11: 4934–4940.

    Article  CAS  PubMed  Google Scholar 

  14. Takano S, Kamiyama H, Tsuboi K, Matsumura A . Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathol 2004; 21: 69–73.

    Article  CAS  PubMed  Google Scholar 

  15. Ma HI, Lin SZ, Chiang YH, Li J, Chen SL, Tsao YP et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther 2002; 9: 2–11.

    Article  CAS  PubMed  Google Scholar 

  16. Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 1993; 177: 1809–1814.

    Article  CAS  PubMed  Google Scholar 

  17. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 1996; 184: 963–969.

    Article  CAS  PubMed  Google Scholar 

  18. Luster AD, Leder P . IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med 1993; 178: 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  19. Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC et al. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 1996; 184: 981–992.

    Article  CAS  PubMed  Google Scholar 

  20. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 1995; 182: 155–162.

    Article  CAS  PubMed  Google Scholar 

  21. Proost P, Vynckier AK, Mahieu F, Put W, Grillet B, Struyf S et al. Microbial Toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-gamma and provide a mechanism for enhanced synovial chemokine levels in septic arthritis. Eur J Immunol 2003; 33: 3146–3153.

    Article  CAS  PubMed  Google Scholar 

  22. Giese NA, Raykov Z, DeMartino L, Vecchi A, Sozzani S, Dinsart C et al. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther 2002; 9: 432–442.

    Article  CAS  PubMed  Google Scholar 

  23. Narvaiza I, Mazzolini G, Barajas M, Duarte M, Zaratiegui M, Qian C et al. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol 2000; 164: 3112–3122.

    Article  CAS  PubMed  Google Scholar 

  24. Nishimura F, Dusak JE, Eguchi J, Zhu X, Gambotto A, Storkus WJ et al. Adoptive transfer of type 1 CTL mediates effective anti-central nervous system tumor response: critical roles of IFN-inducible protein-10. Cancer Res 2006; 66: 4478–4487.

    Article  CAS  PubMed  Google Scholar 

  25. Huang H, Liu Y, Xiang J . Synergistic effect of adoptive T-cell therapy and intratumoral interferon gamma-inducible protein-10 transgene expression in treatment of established tumors. Cell Immunol 2002; 217: 12–22.

    Article  CAS  PubMed  Google Scholar 

  26. Farber JM . Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 1997; 61: 246–257.

    Article  CAS  PubMed  Google Scholar 

  27. Yanagawa Y, Iijima N, Iwabuchi K, Onoe K . Activation of extracellular signal-related kinase by TNF-alpha controls the maturation and function of murine dendritic cells. J Leukoc Biol 2002; 71: 125–132.

    CAS  PubMed  Google Scholar 

  28. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 1997; 185: 317–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trevejo JM, Marino MW, Philpott N, Josien R, Richards EC, Elkon KB et al. TNF-alpha -dependent maturation of local dendritic cells is critical for activating the adaptive immune response to virus infection. Proc Natl Acad Sci USA 2001; 98: 12162–12167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Chen Z, Li F, Kamencic H, Juurlink B, Gordon JR et al. Tumour necrosis factor-alpha (TNF-alpha) transgene-expressing dendritic cells (DCs) undergo augmented cellular maturation and induce more robust T-cell activation and anti-tumour immunity than DCs generated in recombinant TNF-alpha. Immunology 2003; 108: 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han ZQ, Assenberg M, Liu BL, Wang YB, Simpson G, Thomas S et al. Development of a second-generation oncolytic Herpes simplex virus expressing TNFalpha for cancer therapy. J Gene Med 2007; 9: 99–106.

    Article  CAS  PubMed  Google Scholar 

  32. Cotmore SF, Tattersall P . The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 1987; 33: 91–174.

    Article  CAS  PubMed  Google Scholar 

  33. Rommelaere J, Cornelis JJ . Antineoplastic activity of parvoviruses. J Virol Methods 1991; 33: 233–251.

    Article  CAS  PubMed  Google Scholar 

  34. Dupressoir T, Vanacker JM, Cornelis JJ, Duponchel N, Rommelaere J . Inhibition by parvovirus H-1 of the formation of tumors in nude mice and colonies in vitro by transformed human mammary epithelial cells. Cancer Res 1989; 49: 3203–3208.

    CAS  PubMed  Google Scholar 

  35. Raykov Z, Balboni G, Aprahamian M, Rommelaere J . Carrier cell-mediated delivery of oncolytic parvoviruses for targeting metastases. Int J Cancer 2004; 109: 742–749.

    Article  CAS  PubMed  Google Scholar 

  36. Herrero YCM, Cornelis JJ, Herold-Mende C, Rommelaere J, Schlehofer JR, Geletneky K . Parvovirus H-1 infection of human glioma cells leads to complete viral replication and efficient cell killing. Int J Cancer 2004; 109: 76–84.

    Article  Google Scholar 

  37. Russell SJ, Brandenburger A, Flemming CL, Collins MK, Rommelaere J . Transformation-dependent expression of interleukin genes delivered by a recombinant parvovirus. J Virol 1992; 66: 2821–2828.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dupont F, Avalosse B, Karim A, Mine N, Bosseler M, Maron A et al. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector. Gene Ther 2000; 7: 790–796.

    Article  CAS  PubMed  Google Scholar 

  39. Haag A, Menten P, Van Damme J, Dinsart C, Rommelaere J, Cornelis JJ . Highly efficient transduction and expression of cytokine genes in human tumor cells by means of autonomous parvovirus vectors; generation of antitumor responses in recipient mice. Hum Gene Ther 2000; 11: 597–609.

    Article  CAS  PubMed  Google Scholar 

  40. El Bakkouri K, Servais C, Clement N, Cheong SC, Franssen JD, Velu T et al. In vivo anti-tumour activity of recombinant MVM parvoviral vectors carrying the human interleukin-2 cDNA. J Gene Med 2005; 7: 189–197.

    Article  CAS  PubMed  Google Scholar 

  41. Wetzel K, Menten P, Opdenakker G, Van Damme J, Gröne HJ, Giese N et al. Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts. J Gene Med 2001; 3: 326–337.

    Article  CAS  PubMed  Google Scholar 

  42. Wetzel K, Struyf S, Van Damme J, Kayser T, Vecchi A, Sozzani S et al. MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. Int J Cancer 2007; 120: 1364–1371.

    Article  CAS  PubMed  Google Scholar 

  43. Wrzesinski C, Tesfay L, Salome N, Jauniaux JC, Rommelaere J, Cornelis J et al. Chimeric and pseudotyped parvoviruses minimize the contamination of recombinant stocks with replication-competent viruses and identify a DNA sequence that restricts parvovirus H-1 in mouse cells. J Virol 2003; 77: 3851–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abu El-Asrar AM, Struyf S, Descamps FJ, Al-Obeidan SA, Proost P, Van Damme J et al. Chemokines and gelatinases in the aqueous humor of patients with active uveitis. Am J Ophthalmol 2004; 138: 401–411.

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt K, Hoffend J, Altmann A, Strauss LG, Dimitrakopoulou-Strauss A, Engelhardt B et al. Transfer of the sFLT-1 gene in Morris hepatoma results in decreased growth and perfusion and induction of genes associated with stress response. Clin Cancer Res 2005; 11: 2132–2140.

    Article  CAS  PubMed  Google Scholar 

  46. Vecchi A, Massimiliano L, Ramponi S, Luini W, Bernasconi S, Bonecchi R et al. Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J Leukoc Biol 1999; 66: 489–494.

    Article  CAS  PubMed  Google Scholar 

  47. Garlanda C, Berthier R, Garin J, Stoppacciaro A, Ruco L, Vittet D et al. Characterization of MEC 14.7, a new monoclonal antibody recognizing mouse CD34: a useful reage for identifying and characterizing blood vessels and hematopoietic precursors. Eur J Cell Biol 1997; 73: 368–377.

    CAS  PubMed  Google Scholar 

  48. Majumder S, Zhou LZ, Chaturvedi P, Babcock G, Aras S, Ransohoff RM . Regulation of human IP-10 gene expression in astrocytoma cells by inflammatory cytokines. J Neurosci Res 1998; 54: 169–180.

    Article  CAS  PubMed  Google Scholar 

  49. Kakinuma T, Nakamura K, Wakugawa M, Yano S, Saeki H, Torii H et al. IL-4, but not IL-13, modulates TARC (thymus and activation-regulated chemokine)/CCL17 and IP-10 (interferon-induced protein of 10kDA)/CXCL10 release by TNF-alpha and IFN-gamma in HaCaT cell line. Cytokine 2002; 20: 1–6.

    Article  CAS  PubMed  Google Scholar 

  50. Sheng WS, Hu S, Ni HT, Rowen TN, Lokensgard JR, Peterson PK . TNF-alpha-induced chemokine production and apoptosis in human neural precursor cells. J Leukoc Biol 2005; 78: 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  51. Sato E, Fujimoto J, Toyoki H, Sakaguchi H, Alam SM, Jahan I et al. Expression of IP-10 related to angiogenesis in uterine cervical cancers. Br J Cancer 2007; 96: 1735–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keyser J, Schultz J, Ladell K, Elzaouk L, Heinzerling L, Pavlovic J et al. IP-10-encoding plasmid DNA therapy exhibits anti-tumor and anti-metastatic efficiency. Exp Dermatol 2004; 13: 380–390.

    Article  CAS  PubMed  Google Scholar 

  53. Yang X, Chu Y, Wang Y, Zhang R, Xiong S . Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. J Leukoc Biol 2006; 80: 1434–1444.

    Article  CAS  PubMed  Google Scholar 

  54. Feldman ED, Weinreich DM, Carroll NM, Burness ML, Feldman AL, Turner E et al. Interferon gamma-inducible protein 10 selectively inhibits proliferation and induces apoptosis in endothelial cells. Ann Surg Oncol 2006; 13: 125–133.

    Article  PubMed  Google Scholar 

  55. Struyf S, Burdick MD, Peeters E, Van den Broeck K, Dillen C, Proost P et al. Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis. Cancer Res 2007; 67: 5940–5948.

    Article  CAS  PubMed  Google Scholar 

  56. Pan J, Burdick MD, Belperio JA, Xue YY, Gerard C, Sharma S et al. CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 2006; 176: 1456–1464.

    Article  CAS  PubMed  Google Scholar 

  57. Gouwy M, Struyf S, Proost P, Van Damme J . Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev 2005; 16: 561–580.

    Article  CAS  PubMed  Google Scholar 

  58. Salmaggi A, Gelati M, Dufour A, Corsini E, Pagano S, Baccalini R et al. Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J Interferon Cytokine Res 2002; 22: 631–640.

    Article  CAS  PubMed  Google Scholar 

  59. Yang J, Choi I, Kim SD, Kim ES, Cho B, Kim JY et al. Molecular characterization of cDNA encoding porcine IP-10 and induction of porcine endothelial IP-10 in response to human TNF-alpha. Vet Immunol Immunopathol 2007; 117: 124–128.

    Article  CAS  PubMed  Google Scholar 

  60. Ohmori Y, Hamilton TA . Cooperative interaction between interferon (IFN) stimulus response element and kappa B sequence motifs controls IFN gamma- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. J Biol Chem 1993; 268: 6677–6688.

    CAS  PubMed  Google Scholar 

  61. Regulier E, Paul S, Marigliano M, Kintz J, Poitevin Y, Ledoux C et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther 2001; 8: 45–54.

    Article  CAS  PubMed  Google Scholar 

  62. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao X, Mohaupt M, Jiang J, Liu S, Li B, Qin Z . Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res 2007; 67: 4443–4450.

    Article  CAS  PubMed  Google Scholar 

  64. Lejeune FJ, Lienard D, Matter M, Ruegg C . Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun 2006; 6: 6.

    PubMed  Google Scholar 

  65. Mocellin S, Rossi CR, Pilati P, Nitti D . Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 2005; 16: 35–53.

    Article  CAS  PubMed  Google Scholar 

  66. Seynhaeve AL, Hoving S, Schipper D, Vermeulen CE, de Wiel-Ambagtsheer G, van Tiel ST et al. Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 2007; 67: 9455–9462.

    Article  CAS  PubMed  Google Scholar 

  67. Brunner C, Seiderer J, Schlamp A, Bidlingmaier M, Eigler A, Haimerl W et al. Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 2000; 165: 6278–6286.

    Article  CAS  PubMed  Google Scholar 

  68. Kikuchi T, Abe T, Ohno T . Effects of glioma cells on maturation of dendritic cells. J Neurooncol 2002; 58: 125–130.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank AY Stroh-Dege and W Put for excellent technical assistance and S Vorwald for help in immunohistochemistry. This study was partially supported by a grant from the European Commission (Quality of Life Programme) and by the Centers of Excellence (credit no. EF/05/15) of KU Leuven. SS is a senior research assistant of the FWO-Vlaanderen. CB is a recipient of a fellowship from the International PhD program in Cellular and Molecular Immunology from the Vita-Salute San Raffaele University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Dinsart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enderlin, M., Kleinmann, E., Struyf, S. et al. TNF-α and the IFN-γ-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 16, 149–160 (2009). https://doi.org/10.1038/cgt.2008.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.62

Keywords

This article is cited by

Search

Quick links