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Mitochondria mediates caspase-dependent and independent
retinal cell death in Staphylococcus aureus endophthalmitis
PK Singh1,2 and A Kumar1,2,3

Bacterial endophthalmitis, a vision-threatening complication of ocular surgery or trauma, is characterized by increased intraocular
inflammation and retinal tissue damage. Although significant vision loss in endophthalmitis has been linked to retinal cell death,
the underlying mechanisms of cell death remain elusive. In this study, using a mouse model of Staphylococcus aureus
endophthalmitis and cultured human retinal Müller glia (MIO-M1 cell line), we demonstrate that S. aureus caused significant
apoptotic cell death in the mouse retina and Müller glia, as evidenced by increased number of terminal dUTP nick end labeling and
Annexin V and propidium iodide-positive cells. Immunohistochemistry and western blot studies revealed the reduction in
mitochondrial membrane potential (JC-1 staining), release of cytochrome c into the cytosol, translocation of Bax to the
mitochondria and the activation of caspase-9 and -3 in S. aureus-infected retina/retinal cells. In addition, the activation of PARP-1
and the release of apoptosis inducing factor from mitochondria was also observed in S. aureus-infected retinal cells. Inhibition
studies using pan-caspase (Q-VD-OPH) and PARP-1 (DPQ) inhibitors showed significant reduction in S. aureus-induced retinal cell
death both in vivo and in vitro. Together, our findings demonstrate that in bacterial endophthalmitis, retinal cells undergo apoptosis
in the both caspase-dependent and independent manners, and mitochondria have a central role in this process. Hence, targeting
the identified signaling pathways may provide the rationale to design therapeutic interventions to prevent bystander retinal tissue
damage in bacterial endophthalmitis.
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INTRODUCTION
Apoptosis is a process of programmed cell death, which involves a
sequence of events, including shrinkage of cytoplasm, condensa-
tion of nuclear chromatin with DNA fragmentation and segmenta-
tion of the cell into apoptotic bodies.1,2 This neat packaging of
cellular components allows for the precise removal of tissue
during developmental remodeling in the retina. Beyond this
involvement in ocular development, apoptosis rarely occurs in a
normal, healthy retina but has been implicated in both inherited
and acquired retinal degenerations and various pathological
conditions.3 The molecular pathogenesis of these retinal degen-
erations is still unclear, but apoptotic cell death remains the final
outcome in many retinal diseases, ranging from glaucoma to age-
related macular degeneration, retinitis pigmentosa and retinal
detachment.4–6 Therefore, targeting retinal cell death using
various neuro-protective therapies has been the subject of
extensive research for the past decades, and yet the mechanisms
underlying cell death in various retinal diseases, including
glaucoma remains elusive.7,8 Similarly, very few studies have
investigated retinal cell death under infectious conditions, such as
bacterial endophthalmitis.9,10 Moreover, to our knowledge, none
of the studies elucidated the detailed mechanisms of apoptotic
retinal cell death in endophthalmitis.11,12 As our recent studies
show increased terminal dUTP nick end labeling (TUNEL)-positive
cells in the retina of Staphylococcus aureus13 and Acinetobacter
baumannii14 infected mouse eyes, we sought to elucidate the
fundamental mechanisms and potential check points in retinal cell
death in bacterial endophthalmitis.

Apoptotic response can be evoked by a wide variety of stimuli
such as death receptors, oxidative stress or microbial infection,
and it involves several cellular molecules, including caspases,
Bcl-2-like proteins, mitochondrial factors, and stress-activated
protein kinases, and so on. Regardless of extrinsic or intrinsic
pathways; the caspases have been shown to be key regulators of
almost any form of apoptosis.15 The caspases, being the proteases,
cleave multiple intracellular proteins resulting in the propagation
and final execution of the apoptotic signals. Among the cellular
organelles, the mitochondria are the central regulators of cell
death during development and under pathological conditions.16,17

The mitochondria mediates apoptosis through the release of
various pro-apoptotic factors, the best characterized of which is
cytochrome c.16,18,19 The release of cytochrome c into the cytosol
induces the formation of the apoptosome and activation of
caspase-9 followed by activation of executioner caspase-3.
However, several other apoptotic proteins capable of inducing
cellular apoptosis in a caspase-independent manner also reside
within mitochondria. These include apoptosis inducing factor
(AIF), Omi/HtrA2 and endonuclease G.20–24 The release of these
pro-death factors requires mitochondrial membrane permeabili-
zation which is regulated by the Bcl-2 family. One of the pro-
apoptotic Bcl-2 family proteins Bax has been shown to mediate
these pathways.25 However, whether mitochondrial pathways
have a role in retinal cell apoptosis in bacterial endophthalmitis is
not known.
Our previous studies revealed an essential role of retinal

residential cells (microglia and Müller glia) in providing retinal
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innate defense in endophthalmitis.26–29 The retinal glial cells,
specifically the Müller glia were found to exhibit multiple
mechanisms to kill the invading pathogen including the
generation of reactive oxygen species (ROS) in response to S.
aureus challenge.29 Although, the production of ROS by Müller
glia may contribute towards direct antimicrobial effects, the
excessive ROS levels are known to induce cell death.30 As the
mitochondria are the major source of ROS generation,
we hypothesized that mitochondria have a role in the induction
of retinal cell apoptosis in bacterial endophthalmitis. Here, we
elucidated the molecular mechanisms of retinal cell death using
both in vivo and in vitro models of S. aureus endophthalmitis.
Our data provide the evidence for induction of apoptosis by
mitochondrial-mediated caspase-dependent and -independent
pathways. Furthermore, targeting of both pathways attenuated
apoptosis in S. aureus-infected mouse retina, suggesting the
therapeutic potential of these approaches in ameliorating retinal
tissue damage.

RESULTS
S. aureus induces apoptotic cell death in the mouse retina and
retinal Müller glia
Increased retinal cell death has been associated with declined
visual function in bacterial endophthalmitis.14 To determine
whether S. aureus induces retinal cell death, S. aureus-infected
B6 mouse retina was subjected to apoptosis assays. As shown in
Figure 1a, S. aureus challenge significantly increased the number
of TUNEL-positive cells, an indicator of apoptotic cell death.
Moreover, the TUNEL-positive cells were observed in all retinal
layers, including ganglion cell layer, inner nuclear layer and outer
nuclear layer. In addition to bipolar cells, the predominant nuclei
in inner nuclear layer belong to Müller glia, the major supporting
cells spanning through the entire retina. To investigate whether
Müller glia also died in response to bacterial infection, TUNEL and
Annexin V and propidium iodide (PI) staining was performed on S.
aureus-challenged human retinal Müller glia. To this end our
results showed a time-dependent increase in Müller glia apoptosis
(Figures 1b and c). Together, these findings suggest the induction
of retinal cell apoptosis in bacterial endophthalmitis.

S. aureus infection causes reduced mitochondrial membrane
potential in retinal Müller glia
Recently, we discovered that Müller cells produce ROS as a part
of their defense mechanism against S. aureus infection.31 Although
ROS has an important role in innate defense, excessive ROS
production may lead to cell death. This led us to investigate the
role of mitochondria in S. aureus-induced retinal cell death
including Müller glia. To assess the mitochondrial function
following bacterial infection, we determined the mitochondrial
membrane potential in Müller glia using JC-1 staining. As shown in
Figure 2a, a red fluorescence was predominant in control cells,
indicating the presence of JC-1 in the aggregated form in
mitochondrial membranes. However, S. aureus-infected cells
exhibited increased green fluorescence, indicating the existence
of free JC-1 and the depolarized mitochondrial membrane
potential. The JC-1 staining data was further confirmed
by quantitative analysis of mitochondrial membrane depolariza-
tion using flow cytometry, showing decreased red fluorescence
(JC-1 aggregates) and increased green fluorescence (free JC-1)
in S. aureus-infected Müller glia as compared with uninfected
control cells (Figures 2b and c).

Cytochrome c release and Bax translocation are triggered in
S. aureus-challenged retinal Müller glia
Following mitochondrial membrane depolarization, the release
of cytochrome c from the mitochondria, a fundamental event in
apoptosis, initiates the assembly of the apoptosome resulting
in activation of initiator caspase-9, the downstream effector
caspases-3 and ultimately cell death.19,32 We, therefore, investi-
gated the cellular distribution of cytochrome c using confocal
imaging and subcellular fractionation studies. To this end, our data
show the presence of cytochrome c in the cytoplasm in S. aureus-
challenged Müller glia as observed by confocal imaging
(Figure 3a). Furthermore, the subcellular fractionation and western
blot analysis revealed increased cytochrome c levels in cytosolic
fractions of infected cells as compared with control cells
(Figure 3b).
Having seen the release of cytochrome c in the cytoplasm,

we next assessed the distribution of Bax, one of the major
determinants of the mitochondrial release of cytochrome c and
other apoptotic molecules such as Smac and AIF. Bax is generally
sequestered in the cytosol and translocate into the mitochondria
resulting into permeabilization of mitochondrial membrane and
triggering the release of cytochrome c and the induction
of apoptosis. As shown in Figure 4, challenge of Müller glia with
S. aureus resulted into cellular redistribution of Bax with increased
translocation of Bax from cytosol to the mitochondria (Figure 4a).
These findings were further confirmed by subcellular fractionation
and western blot analysis of Bax, showing increased presence of
Bax in the mitochondrial fractions of both 4 and 8 h post S. aureus-
infected cells (Figure 4b). Collectively, our data shows the
redistribution of cytochrome c and Bax in response to S. aureus
challenge.

S. aureus infection initiates the activation of caspase-9 and -3 and
cleavage of PARP-1 in the mouse retina and retinal Müller glia
After the release of cytochrome c, the next steps involve the
proteolytic cleavage of pro-caspase-9 and -3 resulting into cell
death. Similarly, the cleavage of PARP-1 by caspases is also
considered to be a hallmark of apoptosis. We, therefore,
investigated their potential involvement in triggering apoptosis
in bacterial endophthalmitis. Indeed, our data shows that S. aureus
induces proteolytic cleavage and activation of both pro-caspase-9
and -3 in the B6 mouse retina and the cultured retinal Müller glia
(Figure 5). The time-course studies revealed that the activation
of caspase-9 in retinal tissue is initiated as early as 6 h, further
increase at 12 h, and slight decline at 24 h post S. aureus
infection. However, the activation of caspase-3 that is, cleaved
p20 levels proceeds at 12 h and being highest at 24 h
(Figure 5a). Similarly, time-dependent activation of caspase-9
and -3 was observed in S. aureus-challenged Müller glia
(Figure 5b). We also tested the activation of caspase-8 in both
in vivo and in vitro experimental models, but we did not observe
changes in caspase-8 (data not shown). PARP-1, a multifunc-
tional nuclear protein, is one of the known cellular substrates of
caspases. Therefore, we tested the PARP-1 cleavage following
caspase activation. To this end, our data showed time-
dependent cleavage of PARP-1 in S. aureus-infected retinal
tissue, as evident by increased levels of the cleaved fragment
(89 kDa) and simultaneous decrease of full size (116 kDa) PARP-1
(Figure 5a; lower panel). Similar, time-dependent cleavage of
PARP-1 was detected in S. aureus-challenged retinal Müller glia
(Figure 5b; lower panel). Together, these findings imply the
involvement of caspase-9 and -3 activation and PARP-1 cleavage
in executing the retinal cell death in endophthalmitis.
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Figure 1. S. aureus induces apoptosis in the mouse retina and retinal Müller glia. The right eyes of C57BL/6 mice (n= 4) were injected intravitreally
with 5000 c.f.u. of S. aureus (SA) RN6390, and the left eyes were injected with PBS (control). After 24 h, eyes were enucleated and embedded in
OCT, and retinal cryosections were subjected to TUNEL staining, (blue, DAPI nuclear stain; green, TUNEL-positive cells) (a). In an in vitro
experiment, human retinal Müller glia (MIO-M1 cell line) were left uninfected (control) or challenged with S. aureus for 8 h at the multiplicity of
infection of 10 : 1. The control and S. aureus-infected cells were fixed, permeabilized and subjected to TUNEL staining (b). For quantitative analysis
of apoptotic cells, flow cytometry was performed on Annexin V (fluorescein isothiocyanate labeled) and PI-stained MIO-M1 cells, challenged with
S. aureus for the indicated time points. The bar graph represents the mean percentage of Annexin V and PI-positive cells (c). The in vitro data is a
cumulative of three independent experiments performed in duplicates. **Po0.005; ***Po0.0005, t-test; GCL, ganglion cell layer; INL, inner
nuclear layer; ONL, outer nuclear layer.
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Figure 2. S. aureus challenge reduces the mitochondrial membrane potential in retinal Müller glia. MIO-M1 cells were left uninfected (control)
or challenged with S. aureus (SA) RN6390 (multiplicity of infection, 10 : 1) for 8 h. Cells were stained for JC-1 to measure the change in
mitochondrial membrane potential and observed under the fluorescence microscope (a). For quantification, flow cytometry was used to
measure the relative fluorescence of free JC-1 (green) or aggregates JC-1 (red) in control versus S. aureus-challenged Müller glia (b). Note: the
reduction in mitochondrial membrane potential corresponds to increase in green fluorescence and decrease in red fluorescence as shown in
bar graphs (c). The results are representative of three independent experiments performed in duplicates. ***Po0.0005, t-test.

Figure 3. S. aureus-challenged retinal Müller glia releases cytochrome c from mitochondria. MIO-M1 cells were left uninfected (control) or
challenged with S. aureus (SA) RN6390 (multiplicity of infection, 10 : 1) for 8 h. Cells were stained with MitoTracker red (Mito Red) dye followed
by immunostaining for cytochrome c and observed under confocal microscope (a). In another experiment, S. aureus-challenged MIO-M1 cells
were subjected to subcellular fractionation followed by western blot analysis of cytochrome c (b). Cox 4 and β-actin antibodies were used as
protein loading controls for mitochondrial and cytoplasmic fractions, respectively. Results are representative of two independent experiments.
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Figure 4. S. aureus induces mitochondrial translocation of Bax in retinal Müller glia. MIO-M1 cells were left uninfected (control) or challenged
with S. aureus RN6390 (multiplicity of infection, 10 : 1) for the indicated time points. Cells were stained with MitoTracker red (Mito Red)
followed by immunostaining for Bax and observed under confocal microscope (a). In another experiment, S. aureus-challenged MIO-M1 cells
were subjected to subcellular fractionation followed by western blot analysis for Bax (b). Cox 4 and β-actin antibodies were used as protein
loading controls for mitochondrial and cytoplasmic fractions, respectively. Results are representative of two independent experiments.

Figure 5. S. aureus infection initiates the activation of caspase-9 and -3 and the cleavage of PARP-1 in the mouse retina and retinal Müller glia.
The retinal lysates, prepared from S. aureus-infected B6 mouse eyes at the indicated time point post infection were subjected to western blot
analysis using caspase-9, caspase-3 and PARP-1-specific antibodies. The retinal tissue from PBS-injected eyes at 24 h was used as control
(a). For in vitro studies, MIO-M1 cells were left uninfected (control) or challenged with S. aureus RN6390 (multiplicity of infection, 10 : 1) for
indicated time periods. Cell lysates were prepared using radioimmunoprecipitation assay buffer containing protease and phosphatase
inhibitors cocktail was used for the detection of caspase-9 and caspase-3 by western blot (b). Results are representative of two independent
experiments.

Retinal cell death in bacterial endophthalmitis
PK Singh and A Kumar

5

© 2016 Official Journal of the Cell Death Differentiation Association Cell Death Discovery (2016) 16034



S. aureus induces the release of AIF from mitochondria in retinal
Müller glia
PARP-1 activation followed by the release of AIF from mitochon-
dria is considered to be an important step for caspase-
independent apoptotic cell death.33,34 We investigated the cellular
localization of AIF in retinal Müller glia. Our data show that S.
aureus challenge induces the nuclear localization of AIF, as
revealed by immunostaining and confocal imaging (Figure 6a)
as well as by western blot analysis of AIF in subcellular fractions
(Figure 6b). These results suggest the existence of caspase-
independent apoptotic mechanism in endophthalmitis, involving
the activation of PARP-1 activation followed by nuclear localiza-
tion of AIF.

Inhibition of caspase and PARP-1 activation ameliorates S. aureus-
induced retinal cell death
As both caspase and PARP-1 activation were identified as major
contributors of apoptosis in S. aureus endophthalmitis, we sought
to determine whether their inhibition can diminish retinal cell
death. Following in vitro standardization of various inhibitors
doses, we used a relatively non-toxic, broad-spectrum caspase
inhibitor Q-VD-OPH35–37 and a PARP-1 inhibitor DPQ.38–40 First, we
tested whether Q-VD-OPH treatment attenuates the activation of
caspase-3 in vivo. As shown in Figure 7a, pre-treatment of mouse
eyes with Q-VD-OPH before S. aureus infection almost completely
inhibited the cleavage of caspase-3. Concomitantly, the number of
TUNEL-positive cells were drastically reduced in the eye pretreated
with Q-VD-OPH or DPQ (Figure 7b), suggesting the in vivo
functionality of these inhibitors. Similar findings were observed
in vitro, where both caspase and PARP-1 inhibitors significantly
attenuated the apoptosis of retinal Müller glia in response to S.
aureus challenge witnessed by quantitative flow cytometry
analysis by Annexin V and PI staining (Figure 7c). Collectively,

these results demonstrate caspases and PARP-1 as mediators of
retinal cell death in response to microbial infection.

DISCUSSION
Bacterial endophthalmitis continues to be a major complication of
ocular surgeries and remains an important cause of visual
morbidity.28,41 Bacteria frequently found in endophthalmitis are
Staphylococcus epidermidis or S. aureus.42 Clinical studies have
shown that patients with S. aureus endophthalmitis are most likely
to have severe vision loss, whereas endophthalmitis due to
coagulase-negative staphylococci are generally milder and have a
better outcome.43 In the past 5 years, studies from our laboratory
have extensively investigated host–pathogen interactions in
staphylococcal endophthalmitis.13,14,26,44,45 The increased severity
of S. aureus endophthalmitis has been attributed to the ability of
S. aureus to produce a wide range of virulence factors including
extracellular and cell wall-associated proteins, which interact in
multiple ways with retinal cells.46 More recently, using transcri
ptome and systems biology analyses, we established a molecular
signature of S. aureus endophthalmitis.47 Among various pathways
identified in the transcriptome study, the genes associated with
the response to DNA damage, cell death and apoptosis were
significantly upregulated in S. aureus-infected retina.47 These
results also support our previous studies showing retinal cell death
in bacterial endophthalmitis.13,14 Although, the induction apop-
tosis in microbial infection is not a new phenomenon, surprisingly,
to our knowledge, none of the studies have delineated the
molecular mechanisms of retinal cell death in endophthalmitis.
To explore the mode of S. aureus-induced retinal cell death,

we started investigating the role of two well-known apoptotic
pathways, the extrinsic/death receptor pathway and intrinsic/
mitochondrial. The extrinsic signaling involves transmembrane

Figure 6. S. aureus induces release of AIF from mitochondria in retinal Müller glia. MIO-M1 cells were left uninfected (control) or challenged
with S. aureus RN6390 (multiplicity of infection, 10 : 1) for the indicated time points. Cells were stained with MitoTracker red (Mito Red)
followed by immunostaining for AIF and observed under confocal microscope (a). In another experiment, S. aureus-challenged MIO-M1 cells
were subjected to subcellular fractionation followed by western blot for AIF (b). Cox 4 and β-actin antibodies were used as protein loading
controls for mitochondrial and nuclear enriched fractions, respectively. Results are representative of two independent experiments.
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receptor-mediated interaction and among them FasL/FasR and
TNF-α/TNFR1 are the best characterized.1 FasL is constitutively
expressed in the normal eye and has been shown to have an

essential role in maintaining the immune-privileged environment
by inducing the apoptosis in infiltrating inflammatory cells and
evoking protection against ocular viral infections.48 In a recent

Figure 7. Inhibition of caspases and PARP-1 attenuates S. aureus-induced retinal cell apoptosis. The eyes of B6 mice (n= 5) were pretreated
with intravitreal administration of pan-caspase (Q-VD-OPH) or PARP-1 (DPQ) inhibitors (100 ng per eye for each) 12 h before the induction
of staphylococcal endophthalmitis. Eye injected with DMSO (vehicle used to dissolve inhibitors) served as controls. After 24 h of S. aureus
(SA) infection retina/eyes were subjected to western blot analysis for caspase-3 (a) or TUNEL staining to visualize apoptotic cells (b). The effect
of caspase and PARP-1 inhibition on Müller glia apoptosis was assessed by flow cytometry of MIO-M1 cells pretreated with Q-VD-OPH (40 μM)
and DPQ (20 μM), 1 h before S. aureus challenge for indicated time points (c). Results are representative of at least three independent
experiments.**Po0.005; ***Po0.0005, t-test.
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study by Sugi et al.49 demonstrates that FasL is essential in
promoting the resolution of inflammation and exerts protective
effects in bacterial endophthalmitis. Although Pharmakakis et al.50

reported increased expression of FasL and Bax in a rat model of
S. epidermidis endophthalmitis; their observation is limited to
immunohistochemistry detection. Our qPCR analysis also showed
upregulation of FasL and TNF-α in S. aureus-infected retina;
however, we did not observe the activation of caspase-8 (data not
shown), a major initiator caspase of extrinsic pathways. This
suggests that extrinsic/death receptor pathway may not be a
significant contributor of retinal cell death in S. aureus
endophthalmitis.
As the retina is considered to be the most metabolically active

(highly enriched in mitochondria) tissue in the body and our
transcriptome analysis showing increased DNA damage response,
we propose that apoptosis in bacterial endophthalmitis is
primarily via an intrinsic pathway. Moreover, we recently
discovered that retinal Müller glia generates ROS in response to
S. aureus challenge29 and ROS are potent inducers of oxidative
damage and have been implicated in regulation of apoptosis
including the retina.51 The mitochondria being the major source of
ROS production further propelled our interest to assess their
contribution in retinal cell death in bacterial endophthalmitis.
Mitochondrial membrane depolarization followed by the release
of pro-apoptotic factors is the major consequence of the
mitochondria-mediated apoptosis. Indeed, our data show
the depolarization of mitochondrial membrane (reduced JC-1
aggregates) in bacterial-challenged Müller glia and the concomi-
tant release of cytochrome c in the cytoplasm. Similarly, the
subcellular fractionation analysis of S. aureus-infected retinal tissue
showed the presence of cytochrome c in the cytoplasmic fraction.
Another mechanism leading to alterations of the mitochondrial
membrane integrity is the translocation of pro-apoptotic protein
Bax from the cytosol into mitochondria where they form channels
and/or regulate the function of pre-existing channels.1 It has been
reported that the translocation of Bax from cytosol into
mitochondria targets the mitochondrial membrane contact sites,
causing the mitochondrial permeability transition, loss of mito-
chondrial potential, release of cytochrome c, subsequent activa-
tion of caspases and DNA fragmentation, resulting into apoptotic
cell death.18,52,53 We, therefore, investigated the subcellular
redistribution of pro-apoptotic Bax and our results clearly
demonstrate the translocation of Bax from cytosol into the
mitochondria following S. aureus infection.
The downstream apoptotic events in intrinsic pathway follow-

ing the release of cytochrome c and Bax translocation involve
caspase activation. Indeed, our data showed the activation of
caspase-9 and caspase-3 in S. aureus-infected Müller glia and the
mouse retina. A significant increase in the cleavage of caspase-3
along with DNA fragmentation is consistently observed among
various retinal diseases, including cytomegalovirus retinitis.54,55

An earlier study by Whiston et al.56 also showed the involvement
of caspase-3 in S. aureus-induced apoptosis and its inhibition by
αβ crystalline protein. A number of different apoptotic pathways
may lead to activation of caspase-3-mediated apoptosis therefore,
a mechanistic evaluation of retinal cell apoptosis is mandatory to
evaluate the therapeutic intervention of cell death to protect
retina and vision loss in bacterial endophthalmitis. In this study
using the complementary in vitro and in vivo models of S. aureus
infection, our data support the involvement of mitochondria-
mediated caspase-3 activation in inducing retinal cell death in
bacterial endophthalmitis.
PARP-1 is a nuclear enzyme also called as guardian of the

genome acting as a sentinel for genome damage.57 However,
PARP-1 has been reported to have an important role in cell death
in various disease models in both caspase-dependent and
-independent manners.57–62 PARP-1 selectively activated by DNA
strand breaks and proteolytic cleavage of PARP-1 has been

considered as a hallmark biochemical feature of apoptosis.
Our data show that S. aureus induces the cleavage of PARP-1
in retina and retinal cells indicating the involvement of PARP-1
in retinal apoptosis. Although, the cleavage of PARP-1 indicate the
caspase-dependent apoptosis, its activation coupled with the
translocation of AIF to the nucleus may suggest caspase-
independent cell death.58,63 Our data showing the subcellular
redistribution (translocation from mitochondria to nucleus) of AIF
by immunostaining and subcellular fractionation indicate the role
of caspase-independent mechanisms of retinal cell death in
endophthalmitis.
As the caspase and PARP-1 activation were identified as key

regulators of apoptosis in S. aureus endophthalmitis, therefore, we
tested whether pharmacological inhibition of caspase and PARP-1
activation can prevent retinal apoptosis. We tested a relatively
non-toxic, broad-spectrum caspase inhibitor Q-VD-OPH35–37 and
our data showed significant attenuation of apoptotic retinal cells
in eyes pretreated with caspase inhibitors. Similarly PARP-1
inhibitor DPQ38–40 also showed a significant reduction in TUNEL
and Annexin V and PI-positive cells in the mouse retina and
cultured retinal Müller glia. These findings suggest that S. aureus-
induced apoptosis in the retina, and retinal cells is mediated
by the activation of caspases and PARP-1 and that their
pharmacological inhibition can be harnessed as the suitable
therapeutic target to prevent retinal cell apoptosis.
In summary, to the best of our knowledge, using both in vivo

and in vitro models, we elucidate here for the first time, detailed
mechanisms of S. aureus-induced retinal cell apoptosis in bacterial
endophthalmitis. We report that S. aureus-induced mitochondrial
membrane depolarization, causing the release of cytochrome c,
and the translocation of Bax to the mitochondria. These signaling
events culminated to the activation of caspase-9 and -3. The
release of AIF and the cleavage of PARP-1 were also observed in S.
aureus-infected retinal cells. Together, these findings led to the
conclusion that retinal cell apoptosis in bacterial endophthalmitis
is mediated by caspase-dependent and independent mitochon-
drial pathways.

MATERIALS AND METHODS
Bacterial strain and reagents
S. aureus (strain RN6390) was maintained in tryptic soy broth (Sigma-
Aldrich, St. Louis, MO, USA). Antibodies against caspases (caspase-3:
Sc7148; caspase-9: Sc8355), cytochrome c (Sc7159), AIF (Sc5586), PARP-1
(Sc25780), Bax (Sc526) and Cox 4 (Sc292052) were purchased from Santa
Cruz Biotechnology (Paso Robles, CA, USA). A mouse monoclonal anti-β-
actin (A2228) antibody was purchased from Sigma-Aldrich. Secondary
horseradish peroxidase-conjugated anti-mouse (170–6516) or anti-rabbit
(170–6515) IgG antibodies were purchased from Bio-Rad (Hercules, CA,
USA). Annexin V and PI staining kit, and JC-1 staining kits were purchased
from BD Biosciences (San Jose, CA, USA). Caspase and PARP-1 inhibitors
were purchased from R&D Biosciences (Minneapolis, MN, USA). ApopTag
Fluorescein In situ Apoptosis Detection Kit was purchased from Millipore
(Billerica, MA, USA).

Cell culture and infection
The immortalized human Müller glia cell line MIO-M1 (received from
Dr. Astrid Limb, University College, London, UK) was maintained in DMEM
supplemented with 10% FBS, 1% penicillin–streptomycin and 10 μg/ml L-
glutamine. Whenever needed, cells were grown overnight in low serum
(1–2%) and antibiotic-free DMEM before infection. The cells were
challenged with S. aureus RN6390 with multiplicity of infection 10 : 1 for
entire study. The cells were treated with caspase (Q-VD-OPH, 40 μM) and
PARP-1 (DPQ, 20 μM) inhibitors 1 h before infection for inhibition studies.

Mice and ethics statement
C57BL/6 (B6) mice were purchased from Jackson’s laboratory (Bar Harbor,
ME, USA). Animals were housed in a restricted access DLAR facility at the
Kresge Eye Institute, were maintained in a 12 h light:12 h dark cycle, and
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fed on LabDiet rodent chow (Labdiet Pico lab Laboratory, St Louis, MO,
USA) and water ad libitum. Mice were treated in compliance with the
Association for Research in Vision and Ophthalmology (ARVO) Statement
for the Use of Animals in Ophthalmic and Vision Research, and all
procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) of Wayne State University under protocol # A 08-02-13.

Induction of endophthalmitis
Endophthalmitis was induced in B6 mice by intravitreal inoculation of 5000
c.f.u. of S. aureus RN6390 as described earlier.13,64 The vehicle (PBS/DMSO)-
treated eyes served as controls. The caspase and PARP-1 inhibitors (100 ng
per eye) were injected intravitreally, 12 h before bacterial inoculation for
the inhibition studies. At the desired time points post infection; retinas
from the enucleated eyes were subjected to western blotting (retinal
lysates made in PBS-containing protease and phosphatase inhibitor
cocktail) or TUNEL staining as described in following sections.

TUNEL
Apoptosis was assessed by TUNEL staining. For in vitro studies, MIO-M1
cells were grown and challenged with S. aureus in a four-well chamber
slide (Fisher Scientific, Rochester, NY, USA) for indicated time points. For
in vivo studies, following infection, the eyes were fixed in Tissue-Tek OCT
(Sakura, Torrance, CA, USA) and 5 µm-thick sagittal sections were collected
from each eye and mounted onto microscope slides. TUNEL staining was
performed on MIO-M1 cells as well as retinal cryosections using ApopTag
Fluorescein In situ Apoptosis Detection Kit as per the manufacturer’s
instruction (Millipore). The TUNEL stained cells/retinal sections were
visualized using an Eclipse 90i fluorescence microscope (Nikon, Melville,
NY, USA).

Annexin V and PI staining
Annexin V and PI staining was carried out using a commercial apoptosis
assay kit (BD Biosciences, San Jose, CA, USA) as per manufacturer’s
recommendations. Briefly, cells were grown and challenged with S. aureus
in a six-well plate for indicated time points. Following challenge, cells were
washed with PBS and harvested by treating with TrypLE (Thermo Scientific,
Rockford, IL, USA). The cells were washed with PBS followed by washing
with 1 × -Annexin V binding buffer and incubated for 30 min in the dark in
100 μl Annexin V binding buffer containing 5 μl fluorescein isothiocyanate-
labeled Annexin V and 5 μl PI. Following incubation cells were washed with
1 × -Annexin V binding buffer and acquired by a BD AccuriC6 flow
cytometer (BD Biosciences, Ann Arbor, MI). At least 50 000 cells were
analyzed in each treatment. The data were analyzed using AccuriC6
software (BD Biosciences, Ann Arbor, MI).

JC-1 staining
Changes in mitochondrial membrane potential were assessed by JC-1
staining as per manufacturer’s instruction (BD Biosciences). In brief, cells
were cultured in a four-chamber slide and challenged with S. aureus for the
indicated time points. Following challenge, cells were washed with PBS
and incubated with BD MitoScreen (JC-1) (BD Biosciences) for 1 h. Cells
were then visualized using an Eclipse 90i fluorescence microscope (Nikon).
For quantitative analysis, cells were grown in a six-well plate and
challenged with S. aureus RN6390 for indicated time periods. Cells were
harvested by treating with TrypLE, washed and stained with JC-1 dye as
indicated above. Cells were acquired by AccuriC6 flow cytometer with
excitation at 488 nm and emission using 670 nm. At least 50 000 cells were
analyzed in each treatment. The flow cytometric data were analyzed using
AccuriC6 software.

Subcellular fractionation
Subcellular fractionations were performed in order to study the localization
of cytochrome c, Bax and AIF. Nuclear, cytosolic and mitochondrial
fractions were prepared as follows: following challenge the cells were
re-suspended and scraped in 500 μl of subcellular fractionation buffer
(20 mM HEPES (pH 7.4), 250 mM sucrose, 10 mM KCl, 1.5 mM MgCl2, 1 mM
EDTA, 1 mM EGTA, 1 mM DTT, and protease and phosphatase inhibitor
cocktail). The cell lysates were passed through a 25 G needle, 5–10 times
using 1 ml syringe and incubated on ice for 30 min. The lysates were
centrifuged at 720× g for 5 min at 4 °C to separate nuclear fraction (pellet)
and washed three times with ice-cold PBS. The resulting supernatants

containing mitochondrial and cytosolic fraction were centrifuged again at
10 000× g for 15 min at 4 °C. The resulting supernatants were used as the
cytosolic fraction. The pellet was washed three times in ice-cold PBS and
used for mitochondrial fraction.

Western blotting
Following S. aureus challenge, MIO-M1 cells were lysed with radio-
immunoprecipitation assay buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl,
1.0% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate
(SDS), 100 mM sodium pyrophosphate, and 3.5 mM sodium orthovana-
date). A protease inhibitor cocktail containing aprotinin, pepstatin A,
leupeptin and antipain (1 mg/ml each), and 0.1 M phenylmethylsulfonyl
fluoride (Sigma-Aldrich) were added to the radioimmunoprecipitation
assay buffer before use (1 μl/ml). Retinal lysates were also prepared in PBS-
containing protease and phosphatase inhibitor cocktail by sonication
followed by centrifugation at 12 000× g for 15 min. The total protein
concentration of the cell and retinal lysates were determined using a Micro
BCA protein assay kit (Thermo Scientific, Rockford, IL, USA). Total protein
samples (30–50 μg) were resolved on SDS-PAGE in Tris-glycine-SDS buffer
(25 mM Tris, 250 mM glycine and 0.1% SDS) and electro-blotted onto
a polyvinylidene fluoride membrane (Millipore). After blocking for 1 h in
5% MPBST (PBS-containing 0.05% Tween 20 and 5% nonfat milk), the blots
were probed with primary antibodies (1 : 1000) overnight at 4 °C. The
membranes were washed three times with PBST (PBS-containing 0.05%
Tween 20) and incubated with horseradish peroxidase-conjugated
secondary antibodies (Bio-Rad, Hercules, CA, USA) diluted in 5% MPBST
at RT for 1 h. Protein bands were visualized with Supersignal West Femto
Chemiluminescent Substrate (Thermo Scientific).

Fluorescence staining and confocal imaging
MIO-M1 cells were cultured in a four-well chamber slide (Fisher Scientific,
Rochester, NY, USA) and stimulated with S. aureus for 8 h. Following
challenge cells were stained with MitoTracker red as per manufacturer
instructions (Thermo Scientific). Following staining, the cells were washed
three times with PBS and fixed with 4% paraformaldehyde made in PBS for
15 min. After washing, the cells were permeabilized with 0.2% Triton X-100
made in PBS. The fixed and permeabilized cells were then blocked with 1%
(w/v) BSA containing 0.2% Triton X-100 for 1 h at room temperature,
followed by incubation with primary antibodies (1 : 100 dilution) overnight
at 4 °C. Following removal of the primary antibodies, the cells were washed
extensively with PBS and incubated for 1 h with specific fluorescein
isothiocyanate-conjugated secondary antibodies (1 : 200 dilutions) at room
temperature. Finally, the cells were extensively washed with PBS, and the
slides were mounted in Vectashield anti-fade mounting medium (Vector
Laboratories, Burlingame, CA, USA) and visualized using confocal laser
scanning microscope (Leica TCS SP 8; Leica Microsystems, Buffalo Grove,
IL, USA).

Statistical analysis
All data are expressed as the mean± S.D. unless indicated otherwise.
Statistical differences between experimental groups were determined
using Student’s t-test. All statistical analyses were performed using
GraphPad Prism 6.2 (GraphPad Software, La Jolla, CA, USA). A value of
Po0.05 was considered statistically significant.
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