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The ovarian reserve is depleted during puberty
in a hormonally driven process dependent on the
pro-apoptotic protein BMF

Seng H Liew1, Quynh-Nhu Nguyen1, Andreas Strasser2,3, Jock K Findlay4,5 and Karla J Hutt*,1

In females, germ cells are maintained in ovarian structures called primordial follicles. The number of primordial follicles in the
ovarian reserve is a critical determinant of the length of the fertile lifespan. Despite this significance, knowledge of the precise
physiological mechanisms that regulate primordial follicle number is lacking. In this study we show that a wave of primordial
follicle depletion occurs during the transition to adulthood in mice. We demonstrate that this sudden and dramatic loss of
primordial follicles is hormonally triggered and identify the pro-apoptotic BH3-only protein, BCL-2 modifying factor (BMF), as
essential for this process, implicating the intrinsic apoptotic pathway as a key mechanism. The elimination of primordial follicles
during puberty is not only a striking developmental event, it is also physiologically important because it ultimately reduces the
availability of primordial follicles and determines the duration of fertility. Collectively, these findings show that puberty is a critical
developmental window for the regulation of the size of ovarian reserve, impacting on female fertility and reproductive longevity.
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The ovarian reserve of non-growing primordial follicles
represents the entire stockpile of oocytes available to females
to support fertility throughout reproductive life.1 Most primor-
dial follicles exist in a dormant state, but a few at a time
become activated to begin the process of folliculogenesis.
Folliculogenesis ultimately terminates in follicular atresia, or
less frequently, culminates in the ovulation of a mature
oocyte.2 The continual entry of primordial follicles into the
growing follicle pool leads to the gradual depletion of the
ovarian reserve as females age, with infertility occurring when
follicle numbers fall below a critical threshold. The pool of
primordial follicles can become prematurely depleted by
agents that induce genotoxic stress (e.g. many anti-cancer
drugs and γ-irradiation), leading to oocyte apoptosis and
follicle atresia.3,4 However, the extent to which developmen-
tally regulated apoptosis, as opposed to apoptosis induced as
a consequence of exposure to specific exogenous stimuli,
directly contributes to the normal postnatal decline of
primordial follicles is less clear, and the factors that influence
the timing of infertility associated with maternal ageing remain
poorly characterised.
A number of studies have documented the numeric decline

in primordial follicles after birth.1,5–10 One such study in mice
showed that the initial ovarian reserve of primordial follicles is
depleted by more than two-thirds between postnatal day (PN)
6 and 45.8 After PN45, when mice are considered sexually
mature, primordial follicles were lost from the ovarian reserve
much more gradually.8 Based on these data, and assuming a
constant rate of loss, mathematical modelling studies

estimated that around 80 primordial follicles are activated
each day to become primary follicles, and ~ 150 primordial
follicles undergo atresia each day in the juvenile ovary.11 Thus,
there is evidence to suggest that apoptosis leading to follicular
atresia may contribute significantly to the reduction in the size
of the ovarian reserve postnatally, at least in very young mice.
However, the concept that large numbers of follicles might be
lost during important developmental events postnatally has
not been investigated. In particular, primordial follicle numbers
and dynamics during puberty in mice have not been studied
and the molecular mechanisms underlying postnatal primor-
dial follicle loss have remained elusive.
BCL-2 modifying factor (BMF) is a pro-apoptotic BH3-only

protein that functions as an initiator of the intrinsic apoptosis
pathway.12,13 The intrinsic apoptosis pathway is triggered by
developmental cues and a variety of cell stressors and is
regulated by the interplay between three sub-groups of
proteins belonging to the BCL-2 family.14,15 The BCL-2 family
of proteins are divided into these sub-groups based on their
structure and function:1 the pro-apoptotic BCL-2 homology
domain 3 only containing proteins, known as BH3-only
proteins (BIM, PUMA, BID, BAD, BMF, BIK, HRK and
NOXA),2 the multi BH domain BCL-2-like pro-survival proteins
(BCL-2, BCL-XL, MCL-1, A1 and BCL-W) and3 the multi-BH
domain pro-apoptotic proteins, BAX, BAK and possibly BOK,
that unleash the downstream cell demolition events.16,17 The
BH3-only proteins initiate apoptosis by binding and neutralis-
ing pro-survival BCL-2 family members, which relieves the
inhibition of pro-apoptotic BAX and BAK.15 Activation of
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pro-apoptotic BAX/BAK leads to the release of cytochrome c
and other apoptogenic factors from themitochondria, resulting
in the formation of the apoptosome, which promotes activation
of caspase-9. The effector caspases (e.g. caspase-3, -7) are
then activated along with other effector proteins. This
ultimately leads to cell demolition with the morphological
characteristics associated with apoptosis, including mem-
brane blebbing, chromatin condensation, nuclear fragmenta-
tion and engulfment of the apoptotic cell.18

We recently reported that ovaries from juvenile (PN20)
Bmf−/− and wild-type (WT) mice had similar numbers of
primordial follicles, but while primordial follicle numbers fell
considerably in ovariesWTmice by PN100, significantly fewer
primordial follicles were lost in the BMF-deficient females
during this period.5 Furthermore, primordial follicle numbers
remained elevated throughout reproductive life and conferred
prolonged fertility in Bmf−/− females.5 These findings suggest
that BMF may be a key factor in directly or indirectly mediating
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Figure 1 Follicle numbers in ovaries fromWTand Bmf− /− female mice. Primordial (a), primary (b), secondary and antral follicles (c), and total follicles (d) were counted in the
ovaries of WT and Bmf− /− mice at PN20, 30, 40 and 50 (n= 6/age/genotype). Data are expressed as mean±S.E.M. *Po0.05 for comparison (two-tailed unpaired t-test) of
follicle numbers between PN40 and 50 WT female mice. #Po0.05 for comparisons (two-tailed unpaired student’s t-test) between Bmf− /− and WT at PN50. For clarity, only
statistical significance of select comparisons are shown. See Supplementary Tables 1 and 2 for statistical significance of all pairwise comparisons within a genotype.
(e) Representative images of primordial follicles in PAS-stained ovarian sections from WTand Bmf− /− mice at PN50. Sections are 20 μM thick enabling primordial follicles to
be clearly identified by focussing up and down in the z-axis. Black inset boxes in top images represent area shown below at higher magnification. Black arrow heads indicate
primordial follicles. White arrow heads indicate empty follicles. Scale bars: Top images= 100 μm, Bottom images= 20 μm. (f) Representative images of secondary follicles in
PAS-stained ovarian sections from WT and Bmf− /− mice at PN50. Black inset boxes in top images represent area shown below at higher magnification. Black arrow heads
indicate secondary follicles. White arrow heads indicate atretic follicles. Scale bars: Top images= 100 μm, Bottom images= 20 μm
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primordial follicle loss postnatally. In the present study, we
focussed on regulation of the size of the ovarian reserve during
the period of time that female mice transition from a juvenile
status to sexual maturity, referred to as puberty, about which
very little is known. We report the following major findings: (1)
we show that a wave of primordial follicle loss occurs during
puberty in mice, (2) we use a genetic mouse model to
demonstrate that apoptosis is required for the pubertal wave of
primordial follicle loss and to identify BMFas the key apoptotic
protein involved, and (3) we use mouse models of early
gonadotropin exposure and puberty suppression to show that
primordial follicle loss is actively triggered by gonadotropins.
The latter finding reveals a novel and unexpected role for
gonadotropins during puberty.

Results

The ovarian reserve of primordial follicles is depleted in a
BMF-dependent process in mice between PN40 and
PN50. Follicles were enumerated in ovaries from WT and
Bmf− /− mice at PN20, 30, 40 and 50, which spans the period
of time that female mice transition from juveniles into sexually
mature adults (Figures 1a–f). This transitional period is
referred to as puberty. The number of primordial follicles
was similar in ovaries from WTand Bmf− /− mice at PN20, 30
and 40 and remained relatively constant during this time
(Figures 1a and e,Supplementary Tables 1 and 2). Strikingly,
the number of primordial follicles fell significantly between
PN40 and PN50 in ovaries from WT females (Figure 1a), but

remained elevated in ovaries from Bmf− /− females, pointing
to an essential role for BMF in this depletion (Figure 1a,
Supplementary Tables 1 and 2). The decrease in primordial
follicle numbers in WT ovaries between PN40 and PN50 was
not associated with a concomitant increase in primary,
secondary or antral follicle numbers, that is, growing follicles
(Figures 1a–c), and there was an overall net loss in total
follicle numbers (Figure 1d). These data suggest that
depletion of the ovarian reserve was not caused by an
increased rate of primordial follicle activation and transition
into the growing follicle pool. Instead, these observations are
consistent with the hypothesis that approximately 50% of the
ovarian reserve (~1800 primordial follicles) are directly lost
during this 10-day period by BMF-dependent atresia. The
dramatic loss of primordial follicles appears to be restricted to
this relatively short transitional period, as our previous studies
show that depletion of the primordial reserve is much more
gradual in adult mice during the remainder of reproductive
life.5 Interestingly, significantly more secondary and antral
follicle were present at PN50 in ovaries from Bmf− /− females
than WT mice (Figures 1c and f), likely indicative of increased
survival in this follicle population. This latter observation is
consistent with a critical role of BMF in the secondary and
antral follicle atresia that we have previously reported.5

Follicular atresia in adolescent and adult WT and Bmf− /−

female mice. Follicular atresia was monitored by morphol-
ogy and apoptotic granulosa cells were confirmed by TUNEL
staining (Figures 2a and b). The inability of current markers to
detect atretic primordial and primary follicles, even during
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Figure 2 Follicular atresia in ovaries fromWTand Bmf− /− female mice. The numbers of atretic follicles were determined in ovaries fromWTand Bmf− /−mice at PN20, 30 40
and 50 (n= 6/age/genotype). (a) Representative images of atretic preantral (secondary) and antral follicles in PAS-stained ovarian sections from WTand Bmf− /− mice at PN50.
Atretic preantral and antral follicles were characterised by the presence of degrading oocytes and/pyknotic granulosa cells. Scale bars= 50 μm. (b) Representative images of
TUNEL-positive atretic follicles (brown staining) in secondary follicles in ovarian sections from WTand Bmf− /− mice at PN50. Scale bars= 50 μm. (c) Data are expressed as
mean±S.E.M. #Po0.05 for comparison of Bmf− /− versus WT females at each age Po0.05 (two-tailed unpaired student’s t-test). For clarity, only pairwise comparisons
between WT and Bmf− /− females at each age are shown. See Supplementary Tables 1 and 2 for statistical significance of all pairwise comparisons within a genotype
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periods of dramatic follicle loss, has been previously
reported5,11 and hence accurate quantification of absolute
primordial follicle numbers (as described above) remains the
most robust method for detecting their death. Consistent with
these earlier studies, we did not find atretic primordial and
primary follicles at any age in either genotype of mice.
Consequently, our analyses were restricted to secondary and
antral follicles. Across the time period analysed, the number
of atretic follicles underwent age- and genotype-dependent
changes (Figure 2c,Supplementary Tables 1 and 2). Con-
sistent with a role for BMF in mediating follicular atresia, the
numbers of atretic follicles were significantly (Po0.05)
decreased in Bmf− /− females at PN20 and PN40 compared
to age-matched WT females. However, at PN50 the numbers
of atretic follicles were increased in ovaries from Bmf− /−

females compared to WT females. While unexpected, the
increased number of atretic follicles in ovaries from Bmf− /−

females at PN50 is likely explained by the fact that there were
twice as many secondary and antral follicles present in these
animals compared to age-matched WT females (Figure 1c).
Taking this into account, we then calculated the percentage of
the secondary and antral follicle population undergoing
atresia and found a slight reduction in atresia in ovaries from
Bmf− /− females (18.9%) compared to ovaries from WT
females (23.0%).

The pubertal transition in WTand Bmf− /− female mice. In
order to gain insight into the relationship between the
progression to sexual maturity and the observed follicle
depletion, we monitored the pubertal transition. We were
unable to use traditional methods, such as vaginal opening
and vaginal cytology, to compare the onset of puberty in WT
and Bmf− /− mice because Bmf− /− females frequently display
delayed vaginal opening or completely imperforate vaginas
as a consequence of the requirement for BMF-mediated
apoptosis for this process.19 Therefore, we used the
appearance of corpora lutea as evidence that the mice had
begun to ovulate and were progressing through puberty.
Corpora lutea were not present in ovaries at PN20
(Figures 3a–c). Corpora lutea were first observed in 3/6 WT
females at PN30 and all (6/6) WT females had ovulated by
PN50 (Figures 3a–c). Thus, the depletion of primordial
follicles in WT females occurred after the first ovulation and
coincided with the transition to adulthood. The appearance of
corpora lutea was observed at a similar time in Bmf− /− mice
(Figures 3a–c). Notably, there were significantly more corpora
lutea in ovaries from Bmf− /− mice compared to WT at PN50
(Figures 3b and c); this may indicate an increased numbers
of ovulations or delayed corpora lutea regression, which is in
part an apoptotic process.20

Follicle loss during puberty is hormonally triggered
rather than age-dependent. Given that the observed
depletion of the ovarian reserve in WT females coincided
with the transition from a juvenile to adult status, we
investigated the possibility that this process was hormonally
triggered. We used Cetrorelix, a gonadotropin-releasing
hormone (GnRH) antagonist used clinically to delay puberty
in girls, to suppress luteinising hormone (LH) secretion in WT
mice.21 Follicle stimulating hormone (FSH) is also suppressed

by Cetrorelix, albeit to a lesser extent.21 This treatment
resulted in a non-significant delay in vaginal opening
(Figure 4b), and effectively disrupted the ability of mice to
attain regular estrous cyclicity, enter diestrus and ovulate
(Figures 4a and c), and significantly reduced ovarian volume
(Figure 4d). These findings are all consistent with lack of cyclic
FSH and LH secretion that occurs during the transition into
adulthood. Strikingly, Cetrorelix treatment completely pre-
vented the depletion of primordial follicles that was normally
observed in WT mice between PN40 and 50 (Figure 4f).
Conversely, we found that primordial follicle loss could be
triggered abnormally early by treating pre-pubertal mice with
hormones (eCG and hCG) that have FSH- and LH-like
properties (Figure 4g). Collectively, these data suggest that
hormonal status, and not age per se, are the key factors in the
timing of follicle loss as females transition to sexual maturity.

Discussion

Rising gonadotropin levels during puberty result in dramatic
and dynamic changes in the ovary, including the development
of follicles to the Graafian stage and the onset of ovulation.
Surprisingly, the regulation of primordial follicle number has
not been well studied as the ovary transitions from a
pubescent state to a state of full adult function. Although
studies of inbred and outbred mouse strains have reported
loss of approximately two thirds of the ovarian reserve
between the neonatal period and adulthood,5,7 to our knowl-
edge there has not yet been a systematic study of follicle
number and loss during puberty. Therefore, the aims of this
study were two-fold:1 to determine primordial follicle numbers
during the transition to adulthood and2 to determine if puberty
and the associated changing gonadotropic environment
impact on the ovarian reserve.
Our results identify puberty as a critical developmental

period during which the ovarian reserve undergoes significant
changes that ultimately have long-term consequences for
reproductive aging and fertile lifespan. Specifically, our data
show that there is a pubertal wave of follicle depletion that
is gonadotropin-triggered and requires the pro-apoptotic
BH3-only protein BMF. That primordial follicle depletion is
gonadotropin-regulated is a surprising finding because the
survival and development of primordial follicles are often
referred to as gonadotropin independent. This understanding
is based on the fact that primordial follicles are present and
develop up to the late preantral stage inmice lacking functional
FSH/LH gonadotropins or their receptors.22–28 However,
reports in the literature confirm that FSH and LH can influence
primordial follicle number (e.g.29). Notably, overexpression of
LH in juvenile mice has been shown to trigger depletion of the
primordial follicle reserve,30 which is in line with the results of
our study wherein exogenous hormone stimulation triggered
earlier follicle depletion whereas, conversely, suppression of
LH and FSH prevented follicle loss. Collectively, these data
argue for an important role for LH and/or FSH as direct or
indirect physiological triggers for pubertal follicle depletion. It is
currently not clear if LH and FSH exert direct actions on
primordial follicles as there is controversy regarding the
expression of gonadotropin receptors this early in follicle
development.31 An alternative explanation is that rising levels
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of LH and/or FSH during puberty indirectly lead to primordial
follicle depletion through their influence on the growing follicle
pool. Also of note, our data using gene targeted-mice establish
BMF as essential for primordial follicle depletion postnatally.
BMF is a pro-apoptotic BCL-2 protein family member with
documented roles in follicle atresia5 and in the regulation of
germ cell numbers during fetal ovarian development.32 The
current results indicate that apoptosis is central to primordial
follicle loss during puberty, and they identify BMF as the key
apoptotic trigger. Whether BMF acts directly on primordial
follicles or regulates apoptosis in growing follicles (or possibly
the ovarian stroma) to indirectly mediate primordial follicle
depletion, is not known.
While it is not clear why such large numbers of follicles are

eliminated at this time of sexual maturation, two recent studies
in mice may provide some insight.33,34 These studies suggest
that there are two populations of primordial follicles within the
ovary that have distinct functional roles.33,34 The primordial
follicles that form first during follicular endowment in the fetal
ovary are characterised by their location within themedulla and
rapid activation at birth.34 Themajority of these follicles are lost/
used beforePN60 and primarily contribute to the establishment
of functional sexual maturity and endocrine cyclicity.33 The
cohort of primordial follicles eliminated from the ovary during
puberty that we characterised in this study possibly belong to
this first population. The second population of primordial
follicles is formed slightly later in the fetal ovary, is located in

the ovarian cortex and is primarily responsible for adult
fertility.33,34 Collectively, these data suggest that there are
functional differences in primordial follicles prior to and after
puberty and that maturational processes during adolescence,
possibly including the loss of abnormal follicles, and increasing
follicle developmental competence may be important for the
establishment of a mature, fully functional, adult ovary.
Although follicle number in relation to pubertal status has

not been specifically studied in girls pre- and post-puberty
(and may not be possible due to limited availability of
appropriate tissue samples), age-based data suggest that
primordial follicle numbers decline by approximately one half
during the adolescent/young adult period in humans (ages
13–25 years),1 similar to what we have observed in our mouse
model. It was also recently reported that primordial follicle
populations undergo morphological and functional changes
with age and pubertal status in humans:35 nearly 20%
primordial follicles in pre-pubertal human ovaries were
abnormal (defined as follicles with an unusually large oocyte
with weakly stained nucleus), whereas abnormal primordial
follicles were never observed in adult tissues.35 The authors
speculated that low quality primordial follicles were eliminated
or preferentially utilised prior to the establishment of the
ovulation in adulthood. These data suggest that changes in
the ovary during the pubertal period extend beyond the cyclic
recruitment of antral follicles for ovulation and include changes
to the size of the ovarian reserve of primordial follicles.
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In summary, we found that approximately 50% of primordial
follicles are lost directly from the ovarian reserve immediately
prior to adulthood in a process that requires the pro-apoptotic
protein BMF and which is gonadotropin triggered. We have
identified puberty as an important developmental time point
during which the ovarian reserve is significantly depleted and

importantly, we have previously shown that this reduction in
follicle numbers ultimately reduces the length of the female
fertile lifespan.5 Our work sheds new light on the develop-
mental mechanisms that regulate the size of the ovarian
reserve and determine the number of follicles available to
support female fertility. Furthermore, these data provide a new
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understanding of how the ovarian reserve is regulated over
time by showing that rather than a steady loss of primordial
follicles postnatally,6–11,36 a wave of follicle loss is actively
triggered at puberty and results in rapid depletion of the
follicle pool.

Materials and Methods
Mice. Bmf− /− mice on a C57BL/6 background have been described previously.13

C57BL/6 (WT) and Bmf− /− mice were housed in a temperature-controlled high
barrier facility (Monash University ARL) with free access to mouse chow and water
and a 12 h light-dark cycle. All animal procedures and experiments were performed
in accordance with the NHMRC Australian Code of Practice for the Care and Use of
Animals and approved by the Monash Animal Research Platform Animal Ethics
Committee.

Assessment of healthy follicle numbers. Unbiased stereology was
used to determine follicle number. Stereology is recognised as the best-practice
method for the quantification of cells in tissue sections.37 Ovaries from WT and
Bmf− /− mice (PN20, 30, 40, 50, n= 6/age/genotype) were fixed in Bouin’s solution,
processed into hydroxyethyl methacrylate resin (Technovit 7100; Kulzer and Co.,
Friedrichsdorf, Germany) and then serially sectioned at 20 μm with a Leica RM2165
microtome (Leica Microsystems Nussloch GmbH, Nussloch, Germany). Sections
were stained with periodic acid-Schiff and haematoxylin. Methodology for
stereological follicle counts has been previously described in detail.6,38 Briefly, we
used a × 100 oil immersion objective on an Olympus BX50 microscope (Tokyo,
Japan) mounted with an Autoscan stage (Autoscan Systems Pty Ltd, Melbourne,
VIC, Australia) which was controlled by the StereoInvestigator stereological system
(Version 11.06.02, MBF Bioscience 2015, MicroBrightField, Inc., Williston, VT,
USA). Every third section was counted and follicle numbers were determined by
multiplying the raw counts of oocytes sampled (Q−) by all three sampling fractions
(1/f1, 1/f2 and 1/f3).

38

Assessment of the numbers of atretic follicles. The numbers of
atretic follicles were counted in consecutive 20 μm glycomethacrylate sections
throughout the whole ovary using the fractionator/physical disector method as
previously described.38 Primordial, primary and secondary follicles were classified
as atretic if they contained an oocyte that was degenerating (indicated by an
irregular of collapsed plasma membrane or a fragmented germinal vesicle), or if
granulosa cells were fragmented or had pyknotic condensed nuclei. Antral follicles
were considered atretic if more than 10% of their granulosa cells were apoptotic, or
if they contained a degenerating oocyte.

Assessment of puberty: corpora lutea numbers. The numbers of
corpora lutea were determined by direct counting of every sixth consecutive 20 μm
glycomethacrylate embedded section encompassing the entire ovary. Adjacent
sections were evaluated to ensure each corpora lutea was only counted once.

Suppression of puberty. The gonadotropin-releasing hormone antagonist
Cetrorelix (Sigma, Castle Hill, NSW, Australia, Cat #5249) was used to delay puberty
in WT mice using daily doses as previously described in rodents.39–41 Injections
(0.1 ml) of either saline or the Cetrorelix (0.5 mg/kg body weight/day) were given
subcutaneously daily for 25 days (n= 6 mice/group). Treatment was initiated prior to

the onset of puberty, which in female mice is first evident by vaginal opening,
occurring at approximately PN28 +/− 2 in our mouse colony. Therefore, treatment
was started at PN25 and continued until the conclusion of the experiment at PN50.
All animals were monitored daily by visual inspection for vaginal opening. Once
vaginal opening was observed, vaginal smears were taken daily to monitor estrus.

Stimulation with equine chorionic gonadotropin and human
chorionic gonadotrophin. PN20 sexually immature female WT mice were
injected with saline (controls) or equine chorionic gonadotropin (eCG, 5IU), followed
44–48 h later by injection of human chorionic gonadotrophin (hCG, 5IU) (n= 6/
group). At PN30, the ovaries were harvested and the primordial follicles counted.

TUNEL staining. The ApopTag Peroxidase in Situ Apoptosis Detection Kit
(Chemicon International, Melbourne, Australia) was used to detect apoptotic cells in
ovarian sections following the manufacturer’s instructions. Apoptotic cells were
visualised by the addition of 0.05% DAB chromagen (Sigma, Castle Hill, NSW,
Australia) and sections were counterstained using neat Harris haematoxylin. A
minimum of three randomly selected slides were evaluated for each animal (n= 6).
Positive controls were performed by exposing slides to DNAseI (according to the kit
instructions). On each slide, one section was used for TUNEL analysis, while the
other served as a negative control (no addition of TdT).

Statistical analysis. Data are presented as mean± S.E.M. and statistical
analysis of follicle numbers was performed using GraphPad Prism software
(GraphPad Software, Inc., La Jolla, CA, USA). Normally distributed data were
analysed by student’s t-test for pairwise comparisons or one-way ANOVA and the
significance was determined by Tukeys post-hoc multiple comparison test.
Differences were considered significant when Po0.05.
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