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Induction of COX-2-PGE2 synthesis by activation of the
MAPK/ERK pathway contributes to neuronal death
triggered by TDP-43-depleted microglia

Q Xia', Q Hu', H Wang', H Yang', F Gao', H Ren, D Chen', C Fu? L Zheng', X Zhen', Z Ying*'* and G Wang*'?

Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous
studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in
TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in
microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2)
production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of
celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together,
our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying
COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel

potential therapy for TDP-43-linked ALS and possibly other types of ALS.
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Amyotrophic lateral sclerosis (ALS) is an adult-onset neuro-
degenerative disease characterized by the degeneration of
motor neurons in the brain and spinal cord." Most cases of
ALS are sporadic, but 10% are familial. Familial ALS cases
are associated with mutations in genes such as Cu/Zn
superoxide dismutase 1 (SODT), TAR DNA-binding protein
43 (TARDBP) and, most recently discovered, C9orf72.
Currently, most available information obtained from ALS
research is based on the study of SOD1, but new studies
focusing on TARDBP and C9orf72 have come to the forefront
of ALS research."? The discovery of the central role of
the protein TDP-43, encoded by TARDBP, in ALS was a
breakthrough in ALS research.®>=® Although pathogenic muta-
tions of TDP-43 are genetically rare, abnormal TDP-43
function is thought to be associated with the majority of ALS
cases.! TDP-43 was identified as a key component of
the ubiquitin-positive inclusions in most ALS patients and
also in other neurodegenerative diseases such as frontotem-
poral lobar degeneration,®” Alzheimer's disease (AD)®®° and
Parkinson’s disease (PD).'®'" TDP-43 is a multifunctional
RNA binding protein, and loss-of-function of TDP-43 has been
increasingly recognized as a key contributor in TDP-43-
mediated pathogenesis.> 2~

Neuroinflammation, a strikihng and common hallmark
involved in many neurodegenerative diseases, including

ALS, is characterized by extensive activation of glial cells
including microglia, astrocytes and oligodendrocytes.'® 16
Although numerous studies have focused on the intrinsic
properties of motor neurons in ALS, a large amount of
evidence showed that glial cells, such as astrocytes and
microglia, could have critical roles in SOD1-mediated motor
neuron degeneration and ALS progression,'” 22 indicating
the importance of non-cell-autonomous toxicity in SOD1-
mediated ALS pathogenesis.

Very interestingly, a vital insight of neuroinflammation
research in ALS was generated by the evidence that both
the mRNA and protein levels of the pro-inflammatory enzyme
cyclooxygenase-2 (COX-2) are upregulated in both transgenic
mouse models and in human postmortem brain and spinal
cord.?>72° The role of COX-2 neurotoxicity in ALS and other
neurodegenerative disorders has been well explored.®°32
One of the key downstream products of COX-2, prostaglandin
E2 (PGE2), can directly mediate COX-2 neurotoxicity both
in vitro and in vivo.3*"3" The levels of COX-2 expression and
PGE2 production are controlled by multiple cell signaling
pathways, including the mitogen-activated protein kinase
(MAPK)/ERK pathway,®8*° and they have been found to be
increased in neurodegenerative diseases including AD, PD
and ALS.25:28:3241-46 |mportantly, COX-2 inhibitors such as
celecoxib exhibited significant neuroprotective effects and
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prolonged survival or delayed disease onset in a SOD1-ALS
transgenic mouse model through the downregulation of PGE2
release.?®

Most recent studies have tried to elucidate the role of glial
cells in neurotoxicity using TDP-43-ALS models, which are
considered to be helpful for better understanding the disease
mechanisms.*’~®' Although the contribution of glial cells to
TDP-43-mediated motor neuron degeneration is now well
supported, this model does not fully suggest an astrocyte-
based non-cell autonomous mechanism. For example, recent
studies have shown that TDP-43-mutant astrocytes do not
affect the survival of motor neurons,®®®" indicating a
previously unrecognized non-cell autonomous TDP-43
proteinopathy that associates with cell types other than
astrocytes.

Given that the role of glial cell types other than astrocytes in
TDP-43-mediated neuroinflammation is still not fully under-
stood, we aim to compare the contribution of microglia and
astrocytes to neurotoxicity in a TDP-43 loss-of-function model.
Here, we show that TDP-43 has a dominant role in promoting
COX-2-PGE2 production through the MAPK/ERK pathway in
primary cultured microglia, but not in primary cultured
astrocytes. Our study suggests that overproduction of PGE2
in microglia is a novel molecular mechanism underlying
neurotoxicity in TDP-43-linked ALS. Moreover, our data
identify celecoxib as a new potential effective treatment of
TDP-43-linked ALS and possibly other types of ALS.

Results

Selective upregulation of COX-2 in TDP-43-deficient
microglia but not astrocytes. The goal of this study is to
better understand the role of TDP-43 in neuroinflammation, a
key feature of ALS. To gain insight into the roles of microglia
and astrocytes in TDP-43-mediated neurotoxicity, we
knocked down TDP-43 in primary cultured microglia and
astrocytes using siRNA against TDP-43, and we then used
biochemical approaches to detect the expression levels of
COX-2 and iNOS, two markers of neuroinflammation. RNAi-
mediated depletion of TDP-43 in microglia resulted in a
greatly increased protein level of COX-2 with or without LPS
treatment, whereas iINOS protein level was unchanged
(Figure 1a). In contrast, protein levels of either COX-2 or
iNOS were not increased in TDP-43-depleted astrocytes with
or without LPS treatment (Figure 1b). To further explore the
effects of regulating TDP-43 on the expression of COX-2 and
iINOS, we performed quantitative real-time PCR (gqRT-PCR)
assays: the mRNA level of COX-2, but not iNOS, was
remarkably upregulated in TDP-43-depleted microglia
(Figure 1c). Similar results were obtained in BV2 cells
(microglial cell line) as in primary cultured microglia
(Supplementary Figure S1). Taken together, these results
indicate a critical role for TDP-43 in COX-2 expression in
microglia.

TDP-43 specifically regulates COX-2 expression in a
MAPK/ERK-dependent manner. To characterize the mole-
cular mechanism underlying the upregulation of COX-2 in
TDP-43-deficient microglia, we examined the changes in cell
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signaling pathways accompanied by upregulation of COX-2
expression in TDP-43-deficient microglia. Given that the
classical MAPK signaling pathway could regulate COX-2
expression and is significantly associated with various
neurodegenerative diseases, we hypothesized that TDP-43
might be involved in the regulation of MAPKs. To test this
possibility, we detected the total and phosphorylated levels of
MEK, ERK, JNK and p38 in TDP-43-deficient microglia. As
shown in Figures 2a and b, depletion of TDP-43 markedly
increased phosphorylated MEK and ERK but not phosphory-
lated JNK or p38. Meanwhile, total protein levels of JNK, p38,
MEK and ERK were not changed.

Given that TDP-43 strongly enhanced MAPK/ERK activation
and COX-2 expression, we hypothesized that TDP-43 might
regulate COX-2 by targeting ERK. Relatedly, we found that
both mRNA and protein levels of COX-2 were no longer
increased in TDP-43-deficient microglia under treatment with
U0126, a MEK1 inhibitor (Figures 2c and d). In contrast,
treatments with a set of other inhibitors, SP600125 (JNK
inhibitor), SB216763 (GSK38 inhibitor) and SB203580 (p38
inhibitor), had no effect on TDP-43-mediated COX-2 expres-
sion (Figures 2e and g). Therefore, our data demonstrate that
TDP-43 regulates microglial COX-2 expression by specifically
targeting MAPK/ERK and not other cell signaling pathways.

TDP-43 regulates AP-1 transcriptional activity by target-
ing the MAPK/ERK pathway. Among the various signaling
molecules associated with COX-2 expression, NF-kB and
AP-1 are two transcription factors that have been known to
act downstream of MAPK/ERK, and they can tightly regulate
COX-2 expression. To identify which signaling pathway is
involved in TDP-43-mediated COX-2 expression, we first
employed an NF-kB inhibitor, BAY. The protein expression
level of COX-2 was still increased in TDP-43-deficient
microglia treated with BAY (Figure 3a), suggesting that
TDP-43 regulates COX-2 in an NF-kB-independent manner.
Next, we detected the transcriptional activity of AP-1 in
TDP-43-depleted cells using a luciferase reporter gene
assay. We found that depletion of TDP-43 significantly
increased AP-1 transcriptional activity in microglia under
normal conditions but not under treatment of U0126 (Figures
3b and c), suggesting that TDP-43 regulates AP-1 transcrip-
tional activity in an ERK-dependent manner.

TDP-43 controls the release of PGE2 in a MAPK/ERK- and
COX-2-dependent manner. Because COX-2 activity is
strongly associated with the production of PGE2, a key
downstream product of COX-2, we next investigated whether
TDP-43 could regulate the production of PGE2. We found
that depletion of TDP-43 greatly increased the release of
PGE2 from microglia, but not from astrocytes, in a time-
dependent manner (Figures 4a and b, and Supplementary
Figure S2). However, this effect of TDP-43 was blocked by
incubating the microglia with either U0126 or celecoxib, a
specific COX-2 inhibitor (Figures 4c and d). Taken together,
our results suggest a key role for COX-2 in TDP-43-mediated
regulation of PGE2.

Loss of TDP-43 induces selective microglia-mediated
neuronal death. Based on the previous observations that



increased levels of PGE2 were toxic to neurons, we
hypothesized that loss of TDP-43 in microglia could initiate
neuronal death owing to the overproduction of PGE2. To test
this possibility, we cultured neurons in media collected from
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TDP-43-depleted microglia (conditioned medium assay)
(Figures 5a and c), and the conditioned medium significantly
induced cell death in both cortical neurons (Figures 5b and
Supplementary Figure S3A) and motor neurons (Figures 5d
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Figure 1  TDP-43 specifically regulates the expression level of COX-2, but not iNOS, in microglia. (a) Primary cultured microglia were transfected with si-control and si-
TDP-43. After 72 h, the cells were treated with PBS or LPS (0.1 pug/ml) for 24 h, and then the cell lysates were subjected to immunoblot analysis using antibodies targeting iNOS,
COX-2, TDP-43 and GAPDH. The quantification of TDP-43, COX-2 and iNOS levels is shown in the lower panels, representing three independent experiments. The data are
presented as the means + S.E.M.; ns, not significantly different; **P<0.01; one-way ANOVA. (b) Experiments similar to those in (a) were performed in primary cultured
astrocytes. The quantification of TDP-43, COX-2 and iNOS levels is shown on the lower side. The data from three independent experiments are presented as the means + S.E.M.;
ns, not significantly different; **P< 0.01; one-way ANOVA. (¢) Primary cultured microglia were transfected with si-control and si-TDP-43 and cultured for 96 h, and then the cells
were processed for qRT-PCR. The mRNA levels of COX-2 and iNOS were each quantified and normalized to GAPDH. The data from three independent experiments are shown

as the means + S.E.M., ns, not significantly different; **P<0.01; one-way ANOVA
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and Supplementary Figure S3B), but not in mouse embryonic
fibroblasts (Figures 5g and h and Supplementary Figure
S3C). Interestingly and importantly, the culture medium from
TDP-43-depleted astrocytes had no effect on neuron viability
(Figures 5e and f).

Celecoxib alleviates neuronal death induced by TDP-43-
depleted microglia. We next investigated whether the
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COX-2 inhibitor celecoxib could alleviate neuronal death
driven by TDP-43-depleted microglia. We performed the
conditioned medium assay as described in Figures 5a and c,
and we found that the impaired viability of both cortical
neurons and motor neurons were restored upon incubating
TDP-43-depleted microglia with celecoxib (Figures 6a and c).
Meanwhile, celecoxib alone had no effect on the viability of
cortical or motor neurons (Figures 6d and e).
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Discussion

Although initially, most studies on ALS focused on the
selective loss of motor neurons themselves, increasing efforts
to understand the role of glial cells in disease pathogenesis
have come to the forefront of the field. The present study
reveals microglia-mediated COX-2-PGE2 production as the
molecular determinant of TDP-43-associated neurotoxicity,
emphasizing the important contribution of microglia to non-
cell-autonomous motor neuron degeneration in TDP-43-linked
ALS (Figure 7).

Although numerous reports have shown that astrogliosis is
associated with disease progression, ALS astrocytes carrying
pathogenic mutant TDP-43 did not exhibit toxicity to motor
neurons in the short term.' On the basis of this finding, it is
possible that other types of cells surrounding motor neurons
are involved in the initial toxic effect of motor neurons.

A TDP-43-mediated microglia-neuron pathway
Q Xia et al

Consistent with this notion, microglia have recently been
suggested to have a role in ALS initiation,>®> but the
contribution of microglia to TDP-43-linked ALS is still not fully
understood. In this study, we show that loss of TDP-43 in
microglia strikingly triggers the increase of COX-2 (roughly
threefold, Figure 1a), accelerating the microglial inflammatory
reaction through the release of PGE2 (roughly 10-fold,
Figure 4), and mediates selective neuronal death (Figure 5).
Because the level of COX-2 in astrocytes is much lower than
that in microglia (Figures 1a and b, shown in the immunoblots),
we reason that in astrocytes, it would be difficult to increase
the expression of COX-2 to levels comparable to those in
microglia through the loss of TDP-43, thus, the production of
PGE?2 in astrocytes would not be sufficient to cause neuronal
death (Figure 1b,4b and 5f). Despite that, an interesting study
showed that astrogliosis could induce motor neuron death in a
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Figure 3 TDP-43influences AP-1 transcriptional activity in a MAPK-signaling-dependent manner. (a) Experiments similar to those in Figure 2d were performed in BV2 cells,
but by incubating cells with BAY (25 M) instead of U0126. The cell lysates were subjected to immunoblot analysis using anti-COX-2, TDP-43 and GAPDH antibodies. The relative
densities are shown on the right side. The data from three independent experiments are presented as the means + S.E.M.; “P< 0.05; **P< 0.01; one-way ANOVA. (b) The stable
BV2 AP-1 cell lines were transfected with si-control and si-TDP-43 for 72 h. Then, the expression of the AP-1 reporter gene was assessed. Data from three independent
experiments are presented as the means + S.E.M.; **P<0.01; one-way ANOVA. (c) Similar experiments as in (b) were performed, and the cells were treated with DMSO or
U0126 (20 uM) for the last 24 h of the transfection. The data from three independent experiments are presented as the means + S.E.M.; ns, not significantly different; **P<0.01;
one-way ANOVA

<
Figure 2 Loss of TDP-43 enhanced COX-2 expression by specifically activating MAPK/ERK signaling. (a) BV2 cells were transfected with si-control and si-TDP-43. At 72 h
after transfection, the cell lysates were subjected to immunoblot analysis using anti-p-JNK1/2, JNK1/2, p-p38, p38, TDP-43 and GAPDH antibodies. The quantification data are
shown on the lower side. The data from three independent experiments are presented as the means + S.E.M.; ns, not significantly different; one-way ANOVA. (b) Similar
experiments as in (a) were performed, but using anti-p-MEK1/2, MEK1, p-ERK1/2, ERK1/2, TDP-43 and GAPDH antibodies. The relative densities are shown on the lower side.
The data from three independent experiments are indicated as the means + S.E.M.; ns, not significantly different; *P< 0.05; **P< 0.01; one-way ANOVA. (c) BV2 cells were
transfected with si-control and si-TDP-43 and cultured for 48 h. Then, the cells were treated with DMSO or U0126 (20 nM) for 24 h. Subsequently, the cells were processed for
qRT-PCR analysis. The mRNA level of COX-2 was quantified and normalized to GAPDH. Data from three independent experiments are presented as the means + S.E.M.; ns, not
significantly different; **P<0.01; one-way ANOVA. (d) Similar transfections and treatments as in (¢) were performed in BV2 cells, and the cell lysates were subjected to
immunoblot analysis using anti-COX-2, p-ERK1/2, TDP-43 and GAPDH antibodies. The relative densities are shown on the right side. The data from three independent
experiments are presented as the means + S.E.M.; ns, not significantly different; **P<0.01; one-way ANOVA. (e-g) Similar experiments as in (d) were performed, but by
incubating cells with SP600125 (10 M), SB216763 (10 zM) and SB203580 (10 M) instead of U0126. The cell lysates were subjected to immunoblot analysis using anti-COX-2,
TDP-43, GAPDH, p-JNK1/2 and p-GS antibodies. The relative densities are shown on the right side. The data from three independent experiments are presented as the
means + S.E.M.; *P<0.05; **P<0.01; one-way ANOVA
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rat model with selective overexpression of mutant TDP-43
in astrocytes,*” we used a TDP-43 loss-of-function model
instead of a TDP-43 gain-of-function model in the current
study, and our data showed that loss of TDP-43 in astrocytes is
not sufficient to enhance COX-2-PGE2 production, and is thus
not sufficient to trigger neurotoxicity. It is therefore possible
that the regulation of neuroinflammation may vary in different
TDP-43-linked ALS models. Interestingly and importantly, a
very recent study provides evidence that microglia specifically
induced neurotoxicity via NF-«B activation in a mutant SOD1

Together with our study, this suggests that microglia may have
a key, non-cell-autonomous role in ALS pathogenesis, and it
provides novel insight into potential therapeutic treatment of
ALS by targeting microglia. Although further investigations are
needed to better understand the role of microglia in TDP-43-
mediated ALS using better models such as animal models or
iPSC-derived cells from ALS patients, a remarkable concor-
dance between the gene expression profile of in vitro
co-cultured astrocytes with motor neurons carrying mutant
SOD1 and spinal cords of mutant SOD1 transgenic mice has

been found in a recent study,>* suggesting that our study

transgenic mouse model of ALS. In addition, inhibition of NF-
using cultured cell model is highly relevant to in vivo ALS

kB in microglia, but not astrocytes, rescued the survival of

motor neurons in vitro and extended survival in SOD1 mice.5® research.
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Figure 4 Loss of TDP-43 strikingly promotes the production of PGE2 in microglia but not in astrocytes. (a) Primary cultured microglia were transfected with si-control and
si-TDP-43 for 96 h. Then, the media from for 24 h cultures of microglia were subjected to PGE2 enzyme-linked immunosorbent assays (ELISAs). The data from three independent
experiments are presented as the means + S.E.M.; **P<0.01; one-way ANOVA (b) BV2 cells and primary cultured astrocytes were transfected with si-control or si-TDP-43 for
72 h or 96 h at a final density of 1x 10° cells per well in 12-well plates. Then, the 1 : 10 diluted media from 24 h cultures of BV2 cells or primary cultured astrocytes were subjected
to PGE2 ELISAs. The data from three independent experiments are presented as the means + S.E.M.; ns, not significantly different; **P< 0.01; one-way ANOVA. (c) BV2 cells
were transfected with si-control or si-TDP-43 for 48 h. Then, the cells were treated with DMSO or U0126 (20 1M) for 24 h, with a final cell density of 3 x 10° cells per well in 24-well
plates. Next, the media from 24 h cultures of BV2 cells were subjected to PGE2 ELISAs. The data from three independent experiments are presented as the means + S.E.M.; ns,
not significantly different; **P < 0.01; one-way ANOVA. (d) Similar experiments as in (b) were performed, but the BV2 cells were treated with celecoxib (50 M) instead of U0126.
The data from three independent experiments are indicated as the means + S.E.M.; ns, not significantly different; **P<0.01; one-way ANOVA
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Figure 5 The culture medium from TDP-43-depleted microglia, but not TDP-43-depleted astrocytes, is toxic to neurons. (a) Scheme of the conditioned medium assay using
TDP-43-depleted primary cultured microglia and cortical neurons. (b) Primary cultured microglia were transfected with si-control and si-TDP-43 for 96 h. The culture medium from
the last 24 h was harvested and used to culture primary cortical neurons transfected with lentiviral EGFP for 16 h. Then, the cells were visualized using confocal microscopy
(Zeiss LSM 710). Scale bars, 30 um, upper panel; 10 um, lower panel. The percentage of viability among cortical neurons is shown on the lower side. The data from three
independent experiments are presented as the means + S.E.M.; **P<0.01; one-way ANOVA. (c) Scheme of primary cultured microglia culture medium treatment of primary
cultured motor neurons. (¢ and d) Similar experiments as in (a and b) were performed in primary cultures of motor neurons instead of cortical neurons. The cells were fixed,
stained with an antibody against MAP2 (neuronal marker) and visualized using fluorescence microscopy (Olympus IX71). Scale bar, 10 um. The percentage of motor neurons
that were viable is shown on the right side. The data from three independent experiments are presented as the means + S.E.M.; **P<0.01; one-way ANOVA. (e and f) Similar
experiments as in (a and b) were performed, using primary cultured astrocytes instead of primary cultured microglia. The cells were visualized using confocal microscopy. Scale
bars, 30 um, upper panel; 10 um, lower panel. The percentage of cortical neurons that were viable is shown on the lower side. The data from three independent experiments
indicated the means + S.E.M., ns, not significantly different, one-way ANOVA. (g and h) Similar experiments as in (a and b) were performed, using mouse embryonic fibroblasts
instead of primary cortical neurons. The cells were visualized using confocal microscopy. Scale bars, 30 um, upper panel; 10 zm, lower panel. The percentage of primary mouse
embryonic fibroblasts that were viable is shown on the lower side. The data from three independent experiments are presented as the means + S.E.M.; ns, not significantly
different; one-way ANOVA
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Because cytoplasmic TDP-43 aggregates accompanied by
a loss of nuclear TDP-43 have been found in ALS patients, a
major unresolved question regarding TDP-43-mediated neu-
rodegeneration is that whether the toxicity is triggered by a
toxic gain-of-function or by a loss-of-function. Consistent with
a gain-of-function mechanism, several cellular signaling path-
ways, such as PTEN, insulin/IGF-1 and redox signaling, have
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been reported to regulate TDP-43 in models expressing
mutant TDP-43;%5% consistent with a loss-of-function
mechanism, TDP-43 participates in the regulation of the heme
oxygenase-1, Rac1-AMPAR and JNK pathways.>*" How-
ever, there is increasing evidence that loss-of-function, rather
than gain-of-function, is the major mechanism mediating
TDP-43 neuropathology.>'2~' Thus, here, we analyzed
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L)

multiple cellular signaling pathways, including MAPK, JNK,
p38 and GSK3g, in TDP-43-depleted cells, and we confirmed
that MEK-ERK signaling was specifically upregulated in
microglia with TDP-43 knockdown (Figures 2a and b). Given
that COX-2 expression is controlled by NF-kB and AP-1, two

involved in TDP-43-mediated regulation of COX-2. Our data
indicate that NF-«kB was not involved in this regulation because
blocking NF-kB activity does not change the effect of TDP-43
on COX-2 expression (Figure 3a). Although a previous study
showed that TDP-43 is associated with NF-«B activation and

inflammation,®* it should be noted that TDP-43 itself did
not regulate NF-«kB activation and inflammation in their

transcription factors that function downstream of MEK-ERK
signaling,®2%® we thought to test whether NF-«B or AP-1 was
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Figure 6 Celecoxib alleviates neuronal death mediated by TDP-43-deficient microglia. (a and b) BV2 cells were transfected with si-control and si-TDP-43. After 72 h, BV2
cells were treated with DMSO or celecoxib for another 24 h. The culture media from the last 24 h were harvested and used to culture primary cortical neurons transfected with
lentiviral EGFP for 8 h (the conditioned medium assay as described for Figure 5). Then, the cells were visualized using confocal microscopy. Scale bars, 30 um (a); 10 pm (b). The
percentage of cortical neurons that were viable is shown on the right side. The data from three independent experiments are presented as the means + S.E.M.; **P<0.01;
one-way ANOVA. (c) Similar experiments as in (a and b) were performed in primary cultured motor neurons. The cells were fixed, stained with an antibody against MAP2 and
visualized using fluorescence microscopy. Scale bar, 10 pm. The percentage of motor neurons that were viable is shown on the right side. The data from three independent
experiments are presented as the means + S.E.M.; **P<0.01; one-way ANOVA. (d) Primary cultured cortical neurons were transfected with lentiviral EGFP. After 72 h, the
cortical neurons were treated with DMSO or celecoxib for another 24 h. Then, the cells were visualized using confocal microscopy. Scale bars, 30 um, upper panel; 10 pm, lower
panel. The percentage of cortical neurons that were viable is shown on the right side. The data from three independent experiments are presented as the means + S.E.M.; ns, not
significantly different; one-way ANOVA. (e) Similar experiments as in (d) were performed in primary cultured motor neurons instead of primary cultured cortical neurons. The cells
were fixed, stained with an antibody against MAP2, and visualized using fluorescence microscopy. Scale bar, 10 um. The percentage of motor neurons that were viable is shown
on the right side. The data from three independent experiments are presented as the means + S.E.M.; ns, not significantly different; one-way ANOVA
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TDP-43-Depleted Microglia

Astrocytes

e

~q Treatm¥nt with celecoxib

Astrocytes

Figure 7 Neuronal death is mediated by the classical MAPK signaling pathway and upregulated PGE2 in TDP-43-depleted microglia. The schematic illustrates the
mechanism by which TDP-43-depleted microglia, but not TDP-43-depleted astrocytes, induce neuronal death. The MAPK/ERK signaling pathway is activated in TDP-43-depleted
microglia, resulting in increased COX-2 and PGE2, which then trigger neuronal death. Inhibition of COX-2 and PGE2 production using celecoxib alleviates neuronal death

mediated by TDP-43-depleted microglia

observations.®* It is possible that other inflammatory inducers
and stimuli may help to trigger NF-kB-mediated inflammation
in TDP-43-depleted microglia. In the current study, we find that
TDP-43 can directly regulate COX-2-PGE2 production
(without extra stimuli), indicating that signaling molecules
other than NF-kB are required for this regulation. Relatedly,
our results show that knockdown of TDP-43 in microglia
resulted in the activation of AP-1 (Figure 3b) and led to marked
increases in both PGE2 and COX-2. Moreover, inhibition of
MEK-ERK signaling by U0126 strikingly diminished the
abnormal increases in AP-1 activity, COX-2 expression and
PGE2 production in TDP-43-deficient microglia (Figures 2d,3c
and 4c). Taken together, these data reveal that the abnormal
activation of MEK-ERK-AP-1 signaling is directly associated
with the upregulation of COX-2-PGE2 production in TDP-43-
depleted microglia.

We found increased COX-2 expression and PGE2 produc-
tion in TDP-43-deficient microglia (Figures 1a and 4a), and
inhibition of COX-2 expression and PGE2 production by
celecoxib treatment reduced the neurotoxicity triggered by
TDP-43-deficient microglia (Figures 6a and c¢). Consistent with
our observations, previous studies have shown that inhibition
of COX-2 and PGE2-mediated inflammation was therapeuti-
cally effective in mutant SOD1 transgenic mice.?®%° Given that
abnormal TDP-43 function is tightly associated with most ALS
cases, the present study provides novel insight into how
microglia induce neurotoxicity in ALS, and, more interestingly,
suggests celecoxib as a potential therapy for ALS.

Materials and Methods

Antibodies. The anti-TDP-43 antibody was described previously® and the
following additional primary antibodies were used: anti-INOS (Abcam, Cambridge, MA,
USA), anti-COX-2 (Epitomics, Burlingame, CA, USA), anti-GAPDH (Chemicon,
Temecula, CA, USA), anti-phospho-MEK (S217/221) (Cell Signaling Technology,
Beverly, MA, USA), anti-MEK (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
anti-phospho-ERK (Santa Cruz Biotechnology), anti-ERK (Santa Cruz Biotechnology),
anti-phospho-JNK (Epitomics), anti-JNK (Santa Cruz Biotechnology), anti-phospho-
p38 (Epitomics), anti-p38 (Santa Cruz Biotechnology), anti-phospho-c-Raf (S338)
(Cell Signaling Technology), anti-c-JUN (Proteintech, Chicago, IL, USA), anti-phospho-
Glycogen Synthase (S641) (p-GS) (Epitomics) and anti-MAP2 (Santa Cruz
Biotechnology). The secondary antibodies used included horseradish peroxidase-
conjugated sheep anti-mouse and anti-rabbit antibodies (Amersham Pharmacia
Biotech, Peapack, NJ, USA). The antibody-bound proteins were visualized using an
ECL detection kit (Amersham Biosciences, Piscataway, NJ, USA) or Alexa Fluor 488
(green) donkey anti-mouse IgG (Invitrogen, La Jolla, CA, USA).

Cell culture, transfection, drug treatment, and RNAi and cell
viability. Mouse motor neuron cell line (NSC-34 cells) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Grand Island, NY, USA)
containing 10% fetal bovine serum (FBS) (Gibco) with penicilin (100 mg/ml) and
streptomycin (100 mg/ml). Mouse microglial cell line (BV2 cells) were cultured in similar
culture medium, but using 10% heat-inactivated FBS instead. For RNAI experiments,
cells were transfected with siRNA against TDP-43 using the RNAIMAX  (Invitrogen)
transfection reagent according to the manufacturers instructions. Subsequently, cells
were treated for 24 h with DMSO (Sangon Biotech, Shanghai, China) or U0126
(Beyotime, Shanghai, China) (20 M), BAY (Beyotime) (25 M), SP600125 (10 uM),
SB216763 (Sigma, St. Louis, MO, USA) (10uM), SB203580 (10 M), celecoxib
(Sigma) (50 uM), or PBS (Gibco) or LPS (Beyotime) (0.1 g/ml). The following
sequences were used for SiRNA targeting mouse TDP-43 (si-TDP-43): 5'-
GGATCTGAAAGACTATTTC-3; siRNA targeting rat TDP-43 (si-TDP-43): 5'-
CCAATGCTGAACCTAAGCA-3'. For cell viability analysis, the cells were stained with
Pl and visualized using fluorescence microscopy. The dead cells with Pl-positive
staining were counted and the percentage of viability of cells was quantified.
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Primary culture of microglia, astrocytes, cortical neurons, spinal
cord motor neurons and mouse embryonic fibroblasts. Primary
cultured microglia were prepared as described elsewhere.”” In brief, the cortex of
new born SD rats was chopped and dissected. Cortex tissues were incubated with
0.25% Trypsin (Gibco) for 15 min at 37 °C, and then the cells were dissociated with
a plastic pipette. Subsequently, cells isolated from cortex tissue were plated on
poly-D-lysine-coated 24-well plates (Corning, Tewksbury, MA, USA) and cultured at
37°C, 5% CO2. Mixed glial cells were cultured in DMEM/F12 with 10% heat-
inactivated FBS and penicillin (100 mg/ml) and streptomycin (100 mg/ml), and the
culture medium were replaced every 3 days. After 14 days, microglia were
separated from mixed glial cells by shaking at 150 rpm for 2h at 37 °C. Primary
cultured astrocytes were similarly dissociated from the cortex of new born ICR mice
and cultured in DMEM with 10% FBS and penicillin (100 mg/ml) and streptomycin
(100 mg/ml). Cortical neurons were similarly dissociated from the cortex of ICR
mouse embryos at embryonic day 17 (E17), and motor neurons were similarly
dissociated from the spinal cord of ICR mouse embryos at E17 as previously
described.®® In brief, the dissociated neurons were cultured in neurobasal medium
(Gibco) with 10% FBS, 1x B27 (Gibco) and glutamine (0.05 mg/ml; Sigma) for 12 h.
Subsequently, culture medium were change to neurobasal medium with 1 x B27 and
glutamine (0.05 mg/ml). After 5 days, the neurons were subjected to experiments.
The purity of motor neurons were shown in Supplementary Figure S4A using
specific markers of neurons (MAP2) and astrocytes (GFAP). Mouse embryonic
fibroblasts were obtained from the epithelium of ICR mouse embryos at E17, and
cultured as described for primary cultured astrocytes.

Immunoblot. Cells were harvested and lysed in cell lysis buffer (50 mM Tris-HCI
(pH 7.6) with protease inhibitor cocktail (Roche, Indianapolis, IN, USA), 150 mM
NaCl, 0.5% sodium deoxycholate, and 1% Nonidet P-40). Then, the proteins were
separated by 10% or 12% SDS-PAGE (polyacrylamide gel electrophoresis) and
transferred onto polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA).

QRT-PCR. Total RNA from BV2 cells was extracted with TRIzol Reagent
(Invitrogen); subsequently, the RNA was reverse-transcribed into cDNA using
PrimeScript RT Master Mix (Takara, Shiga, Japan). Real-time PCR analysis was
performed using SYBR Green Real-Time PCR Master Mix (Takara) using a CFX96
Real-Time System (BIO-RAD, Hercules, CA, USA) and the following primers:
mouse p-actin: 5-GACCTGACTGACTACCTC-3' and 5'-GACAGCGAGGCCAG
GATG-3', mouse iINOS: 5’-TCCCAGCCTGCCCCTTCAAT-3" and 5-CGGATCTC
TCTCCTCCTGGG-3', and mouse COX-2: 5'-CAGGCTGAACTTCGAAAC A-3' and
5-GCTCACGAGGCCACTGATACCTA-3'.

Analysis of PGE2 production. Primary cultured microglia and BV2 cells
were transfected with siRNA against TDP-43. After transfection, the cells were
treated with U0126 or celecoxib for 24 h, and then the levels of PGE2 in 50 ul of
400 | medium were measured with PGE2 ELISA kits (Cayman Chemical Company,
Ann Arbor, MI, USA) according to the manufacturer’s instructions.

Luciferase reporter gene assay. BV2 cells were plated on 24-well plate
and incubated for 16 h at 37 °C. Then the cells were transfected with Cignal lentiviral
AP-1 Reporter (luc) (QIAGEN, Hilden, Japan) according to the manufacturer’s
instructions for 24 h. Subsequently, the culture medium were replaced with fresh
medium. After another 24 h, the cells were cultured in culture medium supplement
with 2.5 ug/ml of puromycin. After 5 days, survived BV2 cells were selected and
the BV2 stable cell line expressing AP-1 reporter construct was generated.
Subsequently, the BV2 cells stably expressing AP-1 constructs were transfected
with siRNA against TDP-43. After 48 h, the cells were treated with U0126 for 24 h,
and then the cells were harvested. Finally, the AP-1 promoter activity was measured
using the luciferase assay kit (Promega, Madison, WI, USA) according to the
manufacturer’s instructions.
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