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Metabolic stress induces aWnt-dependent cancer stem
cell-like state transition

E Lee1,2,10, J Yang1,3,10, M Ku1,4, NH Kim5, Y Park1, CB Park5, J-S Suh1,3,6, ES Park3, JI Yook5, GB Mills7, Y-M Huh*,1,3,6

and J-H Cheong*,6,8,9

Reciprocal interactions between cancer cells and the tumor microenvironment drive multiple clinically significant behaviors
including dormancy, invasion, and metastasis as well as therapy resistance. These microenvironment-dependent phenotypes
share typical characteristics with cancer stem cells (CSC). However, it is poorly understood how metabolic stress in the confined
tumor microenvironment contributes to the emergence and maintenance of CSC-like phenotypes. Here, we demonstrate that
chronic metabolic stress (CMS) in a long-term nutrient deprivation induces a Wnt-dependent phenoconversion of non-stem cancer
cells toward stem-like state and this is reflected in the transcriptome analysis. Addition of Wnt3a as well as transfection of
dominant-negative Tcf4 establishes an obligatory role for the Wnt pathway in the acquisition of CSC-like characteristics in
response to metabolic stress. Furthermore, systematic characterization for multiple single cell-derived clones and negative
enrichment of CD44+/ESA+ stem-like cancer cells, all of which recapitulate stem-like cancer characteristics, suggest stochastic
adaptation rather than selection of pre-existing subclones. Finally, CMS in the tumor microenvironment can drive a CSC-like
phenoconversion of non-stem cancer cells through stochastic state transition dependent on the Wnt pathway. These findings
contribute to an understanding of the metabolic stress-driven dynamic transition of non-stem cancer cells to a stem-like state in
the tumor metabolic microenvironment.
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Studies of neoplastic tissues have provided evidence for self-
renewing, stem-like cells within tumors, commonly designated
cancer stem cell (CSC)-like cells also known as tumor-
initiating cells (TICs).1–3 CSC-rich tumors are associated with
aggressive disease and poor prognosis,4–6 indicating that an
understanding of their biology is pertinent to developing
effective therapies. However, until recently, it has been unclear
what mechanisms control the emergence and maintenance of
CSC-like cells.7,8 The current dominant model for CSC has
been the pre-existence of a rare cell population with stem cell
characteristics within tumors. Recently, a few reports suggest
that non-stem cancer cells can spontaneously give rise to a
stem-like state, implying stochastic nature of the emergence of
CSC-like cells.1,9 Nevertheless, still not much is known about
the identity of and functional properties of CSC-like cells in
tumor progression. Tumor cell growth in the confined micro-
environment causes alterations in metabolic and physico-
chemical milieu where reciprocal influence between tumor
cells and environment would contribute to tumor progression.

The tumor metabolic microenvironment, which is continu-
ously reshaped during tumor progression10–12 can influence
adaptive cellular behaviors including dormancy, invasion, and
metastasis as well as therapy resistance.13–15 Intriguingly,
these acquired phenotypes share characteristics with CSC-
like or TICs.16–19 Adaptive behavior of cancer cells in the
highly heterogeneous microenvironment20 is mediated by
induction of changes in gene expression thereby reprogram-
ming signaling pathways.21,22 Furthermore, it was theorized
that these emerging adaptive behaviors in cancer might be
driven by harsh tumor microenvironmental selective forces.23

There are numerous microenvironmental factors that could
influence cancer cell behavior, particularly the stem-like
characteristics. It is well established and widely accepted that
the typical triad of tumor microenvironment consists of
hypoxia, nutrient depletion and low pH. Although hypoxia is
well studied and known to have a crucial role in driving
malignant tumor cell behaviors,24,25 nutrient depletion has not
been investigated sufficiently to date in terms of its effect on
CSC-like behavior. Furthermore, a recent growing interest in

1Department of Radiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; 2Nanomedical National Core Research Center, Yonsei University,
Seoul 120-749, Republic of Korea; 3Yonsei-KRIBB Medical Convergence Research Institute, Yonsei University Health System, Seoul, Korea; 4Brain Korea 21 PLUS Project
for Medical Science, Yonsei University, Seoul 120-752, Republic of Korea; 5Department of Oral pathology, Oral Cancer Research Institute, Yonsei University College of
Dentistry, Seoul 120-752, Republic of Korea; 6Severance Biomedical Science Institute (SBSI), Seoul 120-752, Republic of Korea; 7Department of Systems Biology, MD
Anderson Cancer Center, Houston, TX, USA; 8Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea and 9Department of
Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
*Corresponding author: J-H Cheong, Department of Surgery, Yonsei University College of Medicine, Yonsei-ro 50-1, Seoul 120-752, Republic of Korea.
Tel: +82 2 2228 2094; Fax: +82 2 313 8289; E-mail: JHCHEONG@yuhs.ac
or Y-M Huh, Department of Radiology, Yonsei University College of Medicine, Yonsei-ro 50-1, Seoul 120-752, Republic of Korea. Tel: +82 2 2228 0832; Fax: +82 2 313 8289;
E-mail: YMHUH@yuhs.ac
10These authors contributed equally to this work.

Received 25.1.15; revised 17.4.15; accepted 21.4.15; Edited by C Munoz-Pinedo

Abbreviations: CSC, cancer stem cell; CMS, chronic metabolic stress; TICs, tumor-initiating cells; RTCA, real-time cell analyzer; ESA, epithelial-specific antigen;
DOX, doxorubicin; PTX, paclitaxel

Citation: Cell Death and Disease (2015) 6, e1805; doi:10.1038/cddis.2015.171
& 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2015.171
mailto:JHCHEONG@yuhs.ac
mailto:YMHUH@yuhs.ac
http://dx.doi.org/10.1038/cddis.2015.171
http://www.nature.com/cddis


cancer metabolism fueled the rediscovery of oncogenic
importance in nutrient utilization and cancer cell biology.
As clinical outcome of cancer depends entirely on treatment
responsiveness and occurrence of metastasis, which are
the contributions of CSCs, we wished to interrogate the
emergence of and maintenance of CSC-like cells in the
experimental setups mimicking a clinical vignette of nutrient
deprivation. We thus show that, in response to chronic
metabolic stress (CMS), cancer cells acquire and maintain
CSC-like characteristics. This CSC-like transition is mediated
through increased Wnt activity induced by metabolic stress.
Furthermore, the Wnt pathway can be exploited by cancer
cells to execute a CSC-like phenoconversion that facilitates
survival under metabolic stress. These results implicate the
Wnt pathway as a critical mediator of CSC-like transition of
subclone(s) of tumor cells in response to metabolic stress.

Results

Phenotypic transition of cancer cells induced by CMS.
To investigate the impact of microenvironment-induced
metabolic stress on the transition of non-CSC cancer cells

into CSC, MDA-MB-231, a claudin low breast cancer cell line,
was cultured for several rounds of prolonged periods in
culture medium without addition of fresh media to mimic
gradual nutrient depletion and CMS. MDA-MB-231 were
initially seeded in nutrient-replete culture medium and
continued in culture without changing medium until ~ 90%
of the cancer cells died. The remaining viable cells
(~10% confluent) were collected and subjected to six rounds
in culture of CMS and designated ‘CMS-induced’ cells
(Figure 1a). Proliferation and viability of the parental and
CMS-induced cells were compared using a real-time cell
analyzer (RTCA). Upon regular culture condition with
complete fresh medium, parental cells proliferated rapidly
reaching a plateau by day 3 (Figure 1b and Supplementary
Figure S1A). After the plateau, parental cells began to
die with 490% of cells dead by day 11. In contrast,
CMS-induced cells continued to proliferate until day 5
with an approximate doubling in cell number. Importantly,
CMS-induced cells demonstrated extended viability under
metabolic stress, as the medium depleted with glucose
after 5–7 days, with 90% cell death being delayed by at least
a week compared with parental cells. In Supplementary
Figure S1B, both parental and CMS-induced cells exhibited

Figure 1 Chronic metabolic stress (CMS) induces an ability to survive acute metabolic stress. (a) Schematic illustration of the experimental setup and strategy to derive
‘induced-cells’ from parental cancer cells. (b) Viability of parental cells and induced cells were determined by real-time cell analyzer (RTCA). Error bars denote the S.E. (n= 3).
(c) Cell viability of parental cells and induced cells (day 4 and day 7, respectively) with or without FBS (5%) and glucose. Error bars denote the S.E. (n= 3). (d) Phase-contrast
microphotographs showing morphologies of parental and induced cells in the presence (+) or absence (− ) of FBS and glucose. Scale bars represent 10 μm. *Po0.01
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proliferation after 3 days from the seeding. On day 11, an
increase of subG1 phase in parental cells was observed
compared with CMS-induced cells (Supplementary Figure S1C).
Moreover, debris from parental cells was remarkably
increased compared with CMS-induced cells. These results
suggest that the difference in cell number is mainly due to
decreased cell death in CMS-induced cells. To define
dependence on extracellular nutrients, parental and CMS-
induced cells were cultured in nutrient-replete (complete
media) and nutrient-deprived conditions (Figures 1c and d).
Over time, CMS-induced cells exhibited markedly higher
viability than parental cells, which rapidly lost viability under
glucose-deprived conditions regardless of presence or
absence of fetal bovine serum (FBS; Figures 1c and d).
Notably, FBS-deprived parental cells showed a dramatic
change in cell fate with most cells undergoing cell death,
while CMS-induced cells were insensitive to FBS-deprivation
over a 7 day culture period. In the absence of glucose,
parental cells were detached from the plate acquiring a
spherical shape within 4 days (Figure 1d). In contrast, CMS-
induced cells remained attached to the plate maintaining a
viability which is a reminiscence of extended survival period
in CMS mimicking culture for at least 10 days (Supplementary
Figure S1A). These observations suggest that CMS-induced
cells gain an ability to survive under prolonged metabolic
stress. This difference in survival is not due to decreased cell
numbers requiring fewer nutrients, as the number of CMS-
induced cells present at each time point was greater than that
of parental cells (Supplementary Figure 1B).

CMS-induced cancer cells exhibit CSC-like properties.
On the basis of the characteristics of CMS-induced cells
under metabolic stress, we determined whether CMS-
induced cells would gain stem-like properties. As assessed
by flow cytometry, CMS-induced cells exhibited three times
higher expression of CD44 and ESA (epithelial-specific
antigen)6 compared with parental cells (Figure 2a). Consistent
with the increase in expression of CSC-associated markers,
CMS-induced cells demonstrated a marked increase in
mammosphere formation compared with parental cells
(Figures 2b and g). As CSC-like cells exhibit drug
resistance,7 we treated CMS-induced cells with 50 μM of
doxorubicin (DOX) and 50 nM of paclitaxel (PTX).26,27 In both
cases, CMS-induced cells demonstrated significantly higher
viability than parental cells under therapy stress (Figure 2c).
Moreover, RTCA analysis combined with matrigel assay
revealed that the CMS-induced cells have increased invasive
potential compared with parental cells independent of
presence or absence of glucose (Figures 2d and e). Finally,
to examine tumor-initiating capacity of CMS-induced cells,
parental and CMS-induced cells were injected into the right
and left thoracic mammary fat pad, respectively, and tumor
volumes observed for 23 days. The growth potential of CMS-
induced cells was markedly greater than parental cells with
an over fivefold difference in tumor volume (Figures 2f and h).
More importantly and pertinent to self-renewal capacity of
CSC-like properties, CMS-induced cells exhibited greater
tumorigenic potentials than parental cells in limiting dilution
tumor formation assay (Supplementary Table S1). To further
validate whether these stem-like characteristics could be

gained under the controlled conditions, parental cells were
subjected to glucose-deprived culture and CSC-like cells
(Chronic) were retrieved. Taken together, the results indicate
that phenotypes associated with ‘stemness’ can be induced
by metabolic stress in vitro and that the effects of metabolic
stress are manifest on return to normal culture conditions or
in tumor formation in vivo.

CMS-induced cells emerge through stochastic adaptation
by cell state transition. To elucidate whether the acquisition
of CSC-like properties occurs through selection of pre-
existing subclone(s) or stochastic adaptation1 of random
cells in evolutionary response to microenvironmental CMS,
we performed limiting dilution of parental cells in 96 wells and
randomly chose 10 single cell-derived clones and repeated
the CMS-simulating culture as described in Figure 3a. Of
note, all clonally expanded cells recapitulated characteristics
of the CMS-induced cells consistent with stochastic adapta-
tion rather than the selection of a pre-existing subpopulation
of MDA-MB-231 cells. Each of the CMS-induced clones
exhibited higher CSC-associated marker (CD44 and ESA)
expression compared with parental clones (Figure 3b and
Supplementary Figure S2). Furthermore, in the absence of
glucose, the CMS-induced clones demonstrated increased
survival (Figure 3c).
As indicated above, CD44+ESA+ expression level was

increased in CMS-induced cells compared with parental
cells (Supplementary Figure S3A). Interestingly, CD44
expression was not significantly changed between parental
and CMS-induced cells (Supplementary Figure S3B). Rather,
the increase in CD44+ESA+ cells was primarily due to the
increased ESA expression that increased from 8.7%
in parental cells to 39.3% in CMS-induced cells
(Supplementary Figure S3C).
Next, to determine whether the subpopulation of ESA+ cells

in parental line are responsible for the phenotypic transition
induced by CMS, ESA-negative parental cells were collected
by fluorescence-activated cell sorting of ESA-positive cells
away from the population (Figure 3d). ESA-negative parental
cells were then repeatedly exposed to in vitro CMS conditions
(see Figure 1a). Following CMS selection, of note, the induced
cells from ESA-negative parental cells acquired a significant
proportion of ESA+ subpopulation (Figure 3e) as well as the
ability to survive in low glucose conditions (Figure 3f). Next, to
elucidate whether the effect observed upon adaptation to
metabolic stressing conditions is indeed due to the increased
number of CSC-like cells in the population, ESA-positive cells
were sorted from parental or induced cells by using a flow
cytometry (Supplementary Figure S4A). Subsequently, the
sorted ESA-positive cell populations were seeded into normal
culture medium or glucose-deprived medium (50 and 200
numbers of cells, respectively). After 2 weeks, as shown in
Supplementary Figure S4B and C, there were no significant
differences in numbers of formed colonies in both seeding
conditions (50 and 200 cells) between parental and induced
cells. When identical clonogenic assay for ESA-positive
populations was conducted in glucose-deprived medium,
both ESA-positive parental and -induced cells formed around
100 colonies and there was no statistical difference
(Supplementary Figure S4D). Collectively, these results
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suggest that CMS-induced cells emerge through stochastic
adaptation by dynamic phenotypic state transition of parental
cells resulting in an increase of CSC-like cells, which is
independent of CSC-associated marker status.

The ability of metabolic stress to convert cells to CSC-
like state is generalizable. To determine whether the
metabolic stress could induce CSC-like characteristics in
ER(+) breast cancer cells, MCF-7 cells, a representative

Figure 2 CMS-induced cancer cells acquire CSC-like characteristics. (a) Flow cytometry analysis for CD44 and ESA as cancer stem cell markers in parental and CMS-
induced cells (MDA-MB-231). (b) Mammosphere-forming ability of parental cells and CMS-induced cells was counted every 3 days. (c) Cell viability of parental and CMS-induced
cells treated with doxorubicin (DOX) or paclitaxel (PTX) at the specified doses for 3 days. (d) Invasion potential of parental and CMS-induced cells through matrigel with (w/) or
without (w/o) glucose. (e) Invasion rates for parental and CMS-induced cells at 24 h on w/ or w/o glucose conditions. (f) Tumor-growth curves of orthotopic xenograft mice with
parental or CMS-induced cells. Error bars denote the S.E. (n= 3). *Po0.01. (g) Phase-contrast microscopy of mammospheres at day 7. Scale bars, 100 μm. (h) Photograph
(upper) and MR image (lower) of tumor mass in xenograft mouse with orthotopic implantation of CMS-induced (right) and parental cells (left). Extracted tumor tissues for
orthotopic xenograft mouse (right panel)

Metabolic stress-driven stem-like transition
E Lee et al

4

Cell Death and Disease



luminal-type breast cancer cell line was assessed. Indeed,
CMS increased the number of CD44+ESA+ MCF-7 cells,
albeit in this case through increasing CD44 expression
(Supplementary Figure S5A and B). Furthermore, both
colony-formation capacity in vitro as well as tumor growth
in vivo were markedly increased in CMS-induced MCF-7 cells
(Supplementary Figure S5C and D).

Activation of TCF/LEF transcriptional activity is required
for transition into CSC-like cell state. Wnt signaling is
involved in the maintenance of adult tissue homeostasis as
well as in embryonic development.28 Furthermore, Wnt
activation is linked to breast cancer development.29 Recent
studies suggest that β-catenin/TCF transcriptional machinery
coupled with CD44 expression is required for maintaining a
CSC-like phenotype and for cancer cell survival during
treatment with cytotoxic drugs.30,31 To investigate whether
activation of canonical Wnt signaling is involved in
CMS-induced CSC-like phenotypic transition, we assessed
expression of a gene set involved in Wnt signaling32,33 in
CMS-induced cells. In an unsupervised analysis, the expres-
sion level of TCF signature was significantly increased in
CMS-induced cells (t-test, P= 0.0014, Figure 4a). Indepen-
dently, increased expression of individual TCF target genes,
such as Axin2, LRP6, SP5, TCF7, MYCN, ID2, and EPHB3,
were confirmed by real-time PCR (Figure 4b). Furthermore,
increase for TCF-4 and β-catenin in protein expression
level were confirmed by confocal microscopy (Figure 5a).
In particular, the localization of β-catenin into nucleus site
was observed by three-dimensional confocal microscopy
(Figures 5b and c and Supplementary Figure S6). Given the

ability of CMS-induced cells to proliferate following addition of
fresh culture medium, we examined the TCF/LEF signature of
CMS-induced cells upon addition of fresh media. Surprisingly,
the expression of TCF/LEF downstream genes was rapidly
attenuated, reaching levels similar to those of parental cells
(Figure 6a). Thus, the metabolic conditions induce dynamic
reversible Wnt transcriptome expression. Based on these
results, we determined whether the Wnt pathway activity is a
prerequisite for CMS-mediated CSC-like phenotypic transi-
tion by inhibiting Tcf4, a mission-critical transcription factor,
function with dominant-negative Tcf4 (dnTcf4).34 Strikingly,
dnTcf4 decreased survival (Figures 6b and c) and mammo-
sphere formation of CMS-induced cells (Figures 6d and e).
Further, to determine whether Wnt activity was sufficient
to mimic CMS selection, we investigated the effects of
increasing Wnt activity in parental cells. Addition of exogenous
Wnt3a to parental cells was sufficient to increase cell
survival under both CMS and glucose-depleted conditions
(Figures 6f and g). Of note, the difference in survival was only
evident at late time points when glucose in the culture
medium was depleted. Consistently, the difference was more
significant when cells were grown in glucose deprivation
conditions. These data support the contention that Wnt
signaling is both required and sufficient for CSC-like
phenotypic transition under metabolic stress.

Discussion

Clinically, CSC-rich tumors are associated with aggressive
disease and poor prognosis,5 indicating that an understanding
of their biology is pertinent to developing effective therapies.

Figure 3 Single clonal (sc)-derived parental cells exposed to CMS convert to CD44+ESA+ mammary CSC-like state. (a) Schematic illustration of the experimental setup and
strategy to derive CMS-induced cells from sc parental cells. Ten single parental clones were cultured under CMS to assess clonal variation. (b) Box plot displaying CD44 and ESA
expression in 10 parental and CMS-induced clones by Flow cytometry analysis. (c) Cell index of 10 parental and CMS-induced clones grown in culture without glucose. Error bars
denote the S.E. (n= 10). (d) The negative enrichment of ESA-positive cells in parental cells (ESA (− ) parental) and Flow cytometry analysis for ESA expression following sorting
out ESA-positive cells. (e) Flow cytometry analysis for CD44 and ESA expression in CMS-induced cells derived from ESA(− ) parental cells (ESA (− ) induced). (f) Cell index of
ESA (− ) parental and ESA (− )-induced cells grown in culture without glucose. Error bars denote the S.E. (n= 3). *Po0.01
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However, it is unclear that what mechanisms control the
maintenance and survival of these TICs. We demonstrate a
stochastic and reversible selection of CSC-like cells during
metabolic stress. These CMS-induced cells exhibit typical
characteristics associated with CSCs including increased
survival under metabolic stress, resistance to chemo-
therapy, increased ability to form tumor spheres, and to
seed tumors in vivo. The properties were seen following
selection both in MDA-MB-231 claudin low and MCF-7
luminal breast cancer cell lines suggesting that the observa-
tion is generalizable.
The cell culture system used was designed to mimic

natural progression of the tumor microenvironment,3–38

wherein tumor cells compete for space and nutrients. In this
setting, unlike conventional standard cell cultures in which
cells are cultured in nutrient-replete media before selective
pressure arises, evolutionary adaptation is an inevitable
consequence.10,11 Given that genetic variation or heteroge-
neous traits that might exist in the cell lines and limited
resources and environmental challenges within the confined
culture condition,8 fitness tests are spontaneously imposed
and subclones with best adaptability will emerge.39–41

One notion is that these ‘subclones’ are actually the outcome
of evolutionary adaptation of cancer cell population whether
purely induced from genetic variation or adapted through
non-genetic mechanisms (e.g., epigenetics).41 The emergence
of adaptive phenotype could be due to either or both
processes.42–47 The ability of individual single clones, as well
as the ESA (− ) parental cells, to recapitulate the selection
process suggest an adaptive mechanism such as metabolic-
induced transcriptional reprogramming rather than selection
of pre-existing subclones. These experiments indicate that the
CD44/ESA marker-defined CSC-like populations might
emerge through an adaptive phenoconversion rather than
selection of pre-existing CD44+ESA+ clones.
One potential caveat of this interpretation is that the cell

lines used underwent a ‘selection process’ either in adaptation
to cell culture or during prolonged cell culture that resulted in
the acquisition of CMS-induced CSC-like characteristics that
are not present in the original tumor. This seems unlikely given
the observation that the metabolic state of tumors reflects that
of nutrient (and oxygen) deprivation.
On the contrary to the common notion that CSC-targeted

therapy can eliminate the root of cancer, the reversible nature

Figure 4 CMS-induced CSC-like cells express Wnt target genes. (a) Unsupervised hierarchical clustering of parental and induced cells using a TCF/LEF gene signature to
compare the Wnt activity (P; parental, I; induced cells). In the heat map, red denotes higher relative expression, whereas green indicates lower relative expression, with degree of
color saturation reflecting the magnitude of the log expression signal. The bottom row represents the median log expression value of TCF/LEF target genes. (b) Expression levels
of mRNAs encoding Axin2, LRP6, TCF7, MYCN, SP5, ID2, and EPHB3 in CMS-induced cells relative to parental cells, respectively, as determined by real-time qRT-PCR. GAPDH
mRNA was used as a reference gene. Error bars denote the S.E. (n= 3)
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of the phenotype conversion between non-stem cancer cells
and CSC-like cells have clinical implications that anti-cancer
therapies exclusively targeting CSC-like cells may not be
sufficient to completely eradicate tumors.
Wnt signaling is essential during embryo development and

in the maintenance of adult tissue homeostasis through the
regulation of adult stem cell function.28,48 Therefore, Wnt
pathway components are natural candidates as genetic
factors that predispose to or trigger cancer progression.34,49

A number of breast cancer cell lines contain a small population
of cells that mimic CSC behaviors.17 Similar to primary breast
cancers, cell line-derived TICs are enriched in cells with the
CD44+/CD24− /low/ESA+ phenotype.26,50 Although the Wnt
pathway may be a common element in regulating stem cell
renewal and maintenance in a variety of systems,51 how this
ability is exploited by cancer remains unclear. It is also
tempting to speculate that aberrantWnt signaling is involved in
the generation of CSC-like cells from cancer cells without CSC
properties.31,52 Based on our data, it is reasonable to argue
that the Wnt signaling pathway is hijacked to maintain survival
during selective pressure mediated by metabolic stress in the
microenvironment. Regardless of the mechanism of the

increased Wnt activity in CMS-induced cells, it is clear that
transcriptional reprogramming favors the expression of genes
related toWnt signaling to promote the transition to a stem-like
state during CMS.

Conclusions

In conclusion, we demonstrate that selective pressure from
CMS drives the stochastic state transition of non-CSC cells to
CSC-like cells, which is dependent on Wnt pathway. Notably,
Wnt-mediated enhanced survival of CMS-induced cells is
distinct under glucose deprivation conditions. Thus, Wnt
signaling represents a potential target to both prevent the
emergence and reverse a CSC-like phenotype under meta-
bolic stress during tumor progression.

Materials and Methods
Cell culture and generation of induced cell lines. Human breast
cancer cell lines, MDA-MB-231 parental cells and CMS-induced MDA-MB-231 cells,
from MDA-MB-231 parental cells were cultured in RPMI-1640 with 5% FBS (Gibco,
Carlsbad, CA, USA) in a humidified incubator containing 5% CO2 at 37 °C. MDA-
MB-231 cells were cultured without refreshment of culture medium and recovered

Figure 5 Wnt signaling is activated in CMS-induced cells. (a) Confocal microscopic images (scale bars mean 20 μm) and (b) magnification images (scale bars mean 2 μm)
for parental and induced cells; nucleus (blue), TCF-4 (red), β-catenin (green). (c) Quantification analysis graphs for TCF-4 and β-catenin
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for several rounds. Briefly, cancer cells were initially seeded in a usual culture
medium and continued in culture without changing medium until 90% of cancer cells
died. This process was designated as in vitro CMS culture. The remaining viable
cells were collected and put in another round of CMS culture conditions for several
rounds.

Constructs and transfections. Transfection into induced cells were carried
out using 1.6 μg pPGS-neo or pPGS-dnTCF4 with 80 μg in 100 μl of Opti-MEM
(Gibco). Mix 4 μl Lipofectamine 2000 in 100 μl of Opti-MEM. After the 5 min
incubation, combine the mixture. Mix gently and incubate for 25 min at room
temperature. Then change the growth medium (1 ml) and add the complexes
(200 μl) to each well. After 4–6 h, medium may be changed. Subsequent selection
of the bulk cell population in G418 (Sigma-Aldrich, St. Louis, MO, USA) at an initial
concentration of 1 mg/ml. After 48 h, the G418 concentration was reduced to
0.75 mg/ml. After 1 week, the G418 concentration was further reduced to 250 mg/ml
and the expression of the transferred genes was confirmed.

Chemotherapy treatment. Cells were split and 1 ×104 cells were treated the
following day with a 1 : 100 dilution of 0.1 M DOX (Sigma-Aldrich) in dimethyl
sulfoxide (DMSO, Sigma-Aldrich) for a final concentration of 50 μM DOX, or 1 μM
PTX (Sigma-Aldrich) in DMSO for a final concentration of 50 nM. Placebo control
plates received 1 : 100 dilution of DMSO. Cells were analyzed at 3 days.

Viability and cell proliferation assay. Cells were collected after each
induced condition and dissociated into single-cell suspension by trypsin/EDTA. For
cell proliferation assay, 1 × 104 cells were seeded in triplicate wells per cell line per
time point in 96-well tissue culture plates. The viability of cells were evaluated by a
colorimetric assay, based on the cellular reduction of 3-(4,5-dimethylthiazoly-2)-2,5-
diphenyltetrazolium bromide (MTT; Cell Proliferation Kit I, Roche, Mannheim,

Germany) in metabolically active cells. In a typical cell viability experiment, cells
were seeded into 96-microwell plates and incubated at 37 °C. The cells were
incubated with fresh medium (100 μl) containing Parental or induced cells at 37 °C.
After the incubation, the yellow MTT solution was treated, and the formed formazan
crystals were solubilized with 10% SDS in 0.01 M HCl. Then the absorbance of the
resulting colored solution was measured at 584 nm and at 650 nm as a reference
using a microplate spectrophotometer (Synergy H4, BioTek, Winooski, VT, USA).
Cell viability was determined from the intensity ratio of treated to non-treated control
cells and shown as an average±S.D. (n= 3).

Clonogenic assay for ESA-positive cell populations. ESA-positive
cell populations, stained by fluorescein-conjugated anti-mouse ESA antibody, were
sorted from MDA-MB-231 parental or -induced cells by using a flow cytometry.
Subsequently, the sorted ESA-positive cell populations were seeded in regular
culture medium or glucose-deprived medium (50 and 200 of cells, respectively).
After 2 weeks, the obtained colonies are fixed and stained (Clonogenic assay kit,
BioPioneer, San Diego, CA, USA). When the clonogenic assay for ESA-positive cell
populations was conducted in glucose-deprived medium, 2000 of ESA-positive cells
(parental or induced) were plated and colonies were assessed after 2 weeks from
the seeding.

Immunofluorescence using confocal microscopy. For visualization
of TCF-4 and β-catenin expression level, MDA-MB-231 cells (parental and induced
cells) were plated at a cell density of 5 × 104 in a flat bottom four-well plate with
coverslips and allowed to adhere overnight. The following day, the cells were then
fixed for 30 min in phosphate-buffered saline (PBS) supplemented with 4%
formaldehyde. Subsequently, the cells were washed three times with PBS and
permeabilized with 0.5% Triton X-100 made in PBS solution for 15 min. The cells
were washed three times with PBS+0.1% bovine serum albumin (BSA) and

Figure 6 Wnt signaling promotes self-renewal and survival of cancer cells in metabolic stress conditions. (a) Unsupervised hierarchical clustering of gene expression using a
TCF/LEF transcriptional signature segregates a subset of cells with distinct state (t-test, P= 2.9E−05). P; parental cells, I: CMS-induced cells, underlined; CMS-induced cells
followed by refreshment of culture medium. The bottom row denotes the median log-expression value of TCF/LEF target genes. (b–e) Cell viability and mammosphere-forming
ability after transfection of induced cells with dnTCF4 construct (induced+dnTCF4) or empty vector (induced+vector). Error bars denote the S.E. (n= 3). (b) Long-term survival in
regular culture media over 20 days simulating CMS. (c) Survival under acute metabolic stress cultivated without glucose. (d) Phase-contrast images of mammospheres and
(e) quantitation of sphere-formation capacity at 12 days. (f–g) Cell viability comparison between parental cells in regular culture media (Parental) and those in Wnt3a conditioned
media (Parental+Wnt3a). (f) Long-term survival with CMS between parental and parental+Wnt3a. Error bars denote the S.E. (n= 3). (g) Survival without glucose between
parental and parental+Wnt3a. Error bars denote the S.E. (n= 3). *Po0.01
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incubated for 30 min for blocking. The cells were incubated for 30 min at 22 1C with
anti-β-catenin mouse antibodies and anti-TCF-4 rabbit antibodies at a 1 : 200
dilution in the wash buffer. After primary serum incubation, the cells were washed
three times with PBS+0.1% BSA and incubated for 30 min with goat anti-mouse IgG
Antibody, (H+L) fluorescein isothiocyanate (FITC; Cat. AP124F, Millipore, Billerica,
MA, USA) and Anti-rabbit IgG (H+L), F(ab')2 fragment (phycoerythrin, PE; Cat.
8885 S, Cell signaling) at 1 : 200 and 1 : 500 dilution for 30 min at 22C. Finally, the
cells were washed three times with PBS, then 10 minutes before analyzing the plate
a final concentration of 5 mg/ml of Hoeches33342 was added to stain the nucleus.
The images were captured by using an confocal microscope (LSM-700, Carl Zeiss,
Jena, Germany) and the ZEN software (ver. 5,5,0,375, Carl Zeiss), which was
designed for acquisition and processing of confocal images.

Single clonal assay. Proliferating cells in parental cell dispersed in
RPMI-1640 with 5% FBS medium at o10 cells/ml. Single clonal cells were
cultured in RPMI-1640 with 5% FBS each 96-well plates 1–2 weeks after seeding.
Proliferating cells in 96-well plates were transferred successively to 12- and 6-well
plates in the presence of RPMI-1640 with 5% FBS medium. Then, the expanded 10
clones were exposed to CMS. Among them, parental clones and induced clones
were gathered and analyzed.

Wnt3A-conditioned medium experiments. MC3T3-E1 osteoblastic
cells, used in the in vitro mechanical loading experiments, were cultured in αMEM
supplemented with 10% heat inactivated FBS, 1% glutamax, and 1% penicillin/
streptomycin. Wnt3A-conditioned media was obtained from an overexpressing
Wnt3A stable murine L-cell line (ATCC, Manassas, VA, USA) that was maintained in
Dulbecco's modified Eagle's medium supplemented with 10% FBS, 1% L-glutamine,
and 0.4 mg/ml Geneticin. To obtain Wnt3A-conditioned media, cells were seeded
into 100 mm dishes and cultured for 4 days in growth medium without Geneticin, the
medium was removed and sterile filtered, and fresh medium was added to the
plates and cultured for an additional 3 days. The medium was then removed and
sterile filtered, and combined with the initial batch of cultured media.

Mammosphere assay. 1 × 105 cells/ml were seeded in a 6-well ultra-low
adhesion plates (Corning, Lowell, MA, USA) in DMEM/F12 (Lonza, Lowell, MA,
USA) with 5% FBS medium supplemented with 10 ng/ml EGF, 10 μg/ml insulin, and
1 μg/ml hydrocortisone (Gibco). Two microlitres of medium per well were added
every 2 days. The number of spheres for each well was evaluated from 3 to 12 days
of culture. Pictures were taken to assess the ratio of spheres to aggregates of cells.

Fluorescence-activated cell sorting. The expression of CD44 and
EpCAM on cells was determined by flow cytometry. Single-cell suspensions from
500 000 cells were collected, washed three times with blocking buffer (0.2% FBS and
0.02% sodium azide in PBS (pH 7.4) to prevent non-specific binding of antibody, and
then incubated with FITC-conjugated anti-mouse EpCAM and PE-conjugated anti-
human CD44 (BD Biosciences, Bedford, MA, USA) for 30 min at 4 °C. Cells were
resuspended in 400 μl of 4% paraformaldehyde solution and stored at 4 °C prior to
flow cytometry. For the quantification of DNA content (cell cycle profiling), cells were
collected and stained with 1 μg/ml propidium iodide (which only incorporates into dead
cells, Sigma-Aldrich), upon staining, cells were incubated for 30 min at 37 °C. Unbound
antibody was washed off and cells were analyzed no longer than 1 h post staining on a
BD FACScalibur (Becton Dickinson, San Jose, CA, USA).

Microarray experiment and data analysis. Total RNA was isolated from
cells harvested after each treatment by using mirVana miRNA Isolation Kit (Ambion
Inc., Austin, TX, USA) according to manufacturer’s protocol. Biotin-labeled cRNA
was prepared by using the Illumina TotalPrep RNA Ampliification Kit (Ambion Inc.).
Total RNA (500 ng) was used for the synthesis of cDNA followed by amplification
and biotin labeling as recommended by the manufacturer. Biotinylated cRNA
(1.5 μg) per sample was hybridized to Illumina Human-6 BeadChip v.2 microarray
and signals were developed by Amersham fluorolink streptavidin-Cy3 (GE Healthcare
Bio-Sciences, Little Chalfont, UK). Data were analyzed using Illumina Bead Studio
v3.0 after scanning with Illumina bead Array Reader confocal scanner (BeadStation
500GXDW; Illumina Inc., San Diego, CA, USA). All statistical analysis was
performed using R 2.3.0 and BRB Arraytools Version 3.5 (http://linus.nci.nih.gov./
BRB-ArrayTools.html) with quantile normalization. Transcriptional profiling of TCF-
responsive genes was described previously.33 Briefly, genes regulated by TCF/LEF
were obtained from independently published results32 and matched to the
corresponding Illumina probes. The TCF/LEF signature consisted of 74 genes that

were responsive to dominant-negative TCF-4 (twofold cut-off) in colon cancer cells.
For an unsupervised hierarchical cluster analysis of TCF/LEF, Ward linkage method
was used together with the Pearson distance for both sample and gene clustering.
The statistical significances of the association between the hierarchical clusters of
TCF/LEF genes were determined by two-tailed Fisher’s exact test.

To minimize the effect of variation from non-biological factors, the values of each
sample were normalized using a quantile normalization method. Random-variance
t-test was applied for the calculation of significance of each gene in the comparison of
two classes and one-way ANOVA was applied for the evaluation of significance in multi-
group comparison. Cluster analysis was performed with Cluster and Treeview (http://rana.
lbl.gov/EigenSoftware.htm). For cluster analysis, log2 transformed data were centered to
mean values of each gene's expression. Gene Set Enrichment Analysis was performed
against GO (Gene Ontology) of Biological Process and nine Kolmogorov–Smirnov
statistic was applied for the evaluation of statistical significance of each GO category.

Quantitative real-time RT-PCR. RNA was extracted using the RNA
isolation Kit (Ambion, Foster City, CA, USA), total RNA (1 μg) was reverse
transcribed to cDNA by using the SuperScript III First-Strand Synthesis System
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. The
primer sequences used for the reactions are in Supplementary Figure S7. RT-PCR
was performed in LC480 (Roche) Sequence Detection System. GAPDH was used
as the reference gene.

RTCA proliferation, invasion, and migration assays. RTCA (xCELLi-
gence Roche, Penzberg, Germany) proliferation, invasion, and migration assay measures
the effect of any perturbations in a label-free real-time setting. For RTCA proliferation
experiments, 1 × 104 cells were in serum medium for 20 days and seeded in RTCA E-16
plates. For RTCA invasion or migration experiments, 4 × 104 cells were then starved in
serum-free medium for 24 h and seeded in RTCA CIM-16 plates in serum-free medium.
Full-growth medium was used as a chemoattractant in the lower chamber.
Measurements by cell index were performed in a time-resolved manner using the
RTCA device. For invasion assays, the CIM-16 plates were initially coated with Matrigel
(BD Biosciences) diluted in serum-free medium at a ratio of 1 : 20. Parental and induced
cells were stimulated to invade in the presence or absence of glucose.

Animal protocol. Female nude mice (BALB/c-Slc, 4–6 weeks) were used for
in vivo tumor-growth studies. All experiments were conducted with the approval of
the Association for Assessment and Accreditation of Laboratory Animal Care
International. All of the in vivo studies were carried out under approved institutional
experimental animal care and use protocols. For orthotopic injections, parental and
induced cells were resuspended at 1 × 106 cells/100 μl in 1 : 1 (v/v) media and
Matrigel (BD Biosciences, San Jose, CA, USA) and injected into mammary fat pad
of 4-week-old athymic nude mice, respectively. Mice were weighed, and tumor
measurements were taken in three coordinates using digital calipers two to three
times weekly. Tumor measurements were converted to tumor volume using the
formula L × S2/2 (where L, longest diameter; S, shortest diameter). At sacrifice, mice
were weighed, and tumors excised and assessed histologically for verification of
tumor growth. Statistical significance was determined using Student’s t-test.

Animal MR imaging. MRI of the xenograft mice model was performed
with a 3 T clinical MR imager (Philips Medical Systems, Best, The Netherlands).
For T2-weighted MRI at 3 T, the following parameters were adopted: point
resolution= 185 × 185 μm, section thickness= 0.6 mm, TE= 80 ms, TR= 5142
ms, and number of acquisitions= 1.

Statistical analysis. In vitro results are expressed as mean±S.D. and in vivo
results are expressed as mean±S.E. Student’s t-test was performed to determine
statistically significant differences between groups, and P-values (o0.01 or 0.05)
were considered statistically significant.
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