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Platelet-activating factor induces cell cycle arrest and
disrupts the DNA damage response in mast cells

N Puebla-Osorio1, E Damiani2, L Bover1 and SE Ullrich*,1,3

Platelet-activating factor (PAF) is a potent phospholipid modulator of inflammation that has diverse physiological and pathological
functions. Previously, we demonstrated that PAF has an essential role in ultraviolet (UV)-induced immunosuppression and reduces
the repair of damaged DNA, suggesting that UV-induced PAF is contributing to skin cancer initiation by inducing immune
suppression and also affecting a proper DNA damage response. The exact role of PAF in modulating cell proliferation,
differentiation or transformation is unclear. Here, we investigated the mechanism(s) by which PAF affects the cell cycle and impairs
early DNA damage response. PAF arrests proliferation in transformed and nontransformed human mast cells by reducing the
expression of cyclin-B1 and promoting the expression of p21. PAF-treated cells show a dose-dependent cell cycle arrest mainly at
G2–M, and a decrease in the DNA damage response elements MCPH1/BRIT-1 and ataxia telangiectasia and rad related (ATR).
In addition, PAF disrupts the localization of p-ataxia telangiectasia mutated (p-ATM), and phosphorylated-ataxia telangiectasia and
rad related (p-ATR) at the site of DNA damage. Whereas the potent effect on cell cycle arrest may imply a tumor suppressor activity
for PAF, the impairment of proper DNA damage response might implicate PAF as a tumor promoter. The outcome of these diverse
effects may be dependent on specific cues in the microenvironment.
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Ultraviolet (UV)-mediated immunosuppression poses a major
risk for skin cancer induction,1,2 and many have reported
that an essential mediator in this process is UV-induced
platelet-activating factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-
phosphocholine).3–5 PAF is a phospholipid, first discovered as
a secreted component by activated innate immune cells,6,7

that mediates its activity by binding to a G-protein-coupled
receptor.8 It is involved in a variety of mechanisms including
the release of histamine in activated leukocytes,9–11 anaphy-
laxis, and phagocytosis.12

Exposure to low doses of UV radiation activates PAF
release by keratinocytes,13,14 so it is likely that most of the
population is regularly exposed to keratinocyte-derived PAF. In
previous studies we showed that PAF upregulates both
CXCR4 on mast cells and its ligand (CXCL12) on draining
lymph node cells, promoting themigration of dermal mast cells
from inflamed skin to the lymph nodes.15 Mast cells that reach
the draining lymph nodes activate immune suppression
by releasing interleukin 10.16 Blocking mast cell migration by
using a CXCR4 antagonist, AMD3100, blocks UV-induced
immune suppression and the induction of skin cancer.15,17 No
immune suppression is noted when PAF receptor-deficient
mice (PAFR-/-) are exposed to UV radiation,4,5 nor can one
reconstitute immune suppression when PAFR-/- mast cells are
used to reconstitute mast cell-deficient mice.18 PAF also has a
critical role in skin cancer induction and progression,19,20 and

this may reflect its capacity to both induce immune suppres-
sion and hamper DNA repair.21

Hanahan and Weinberg recognized the important roles
inflammation and immune evasion play in the initiation of
cancer.22 UV-induced PAF by activating immune suppression,
retarding DNA repair and activating inflammation clearly
constitutes an important hallmark for cancer induction.
Supporting this idea is the observation that PAF is involved
in a variety of other cancers besides skin cancer.23–27

Although we previously demonstrated that PAF suppresses
the rate of DNA repair in vivo,21 little is known regarding the
mechanisms involved. In this study we performed a series of
experiments to determine how PAF affects DNA repair by
examining important checkpoints that regulate DNA repair and
cell cycle progression. We primarily used mast cells because
of the critical role these cells have in UV-induced immune
suppression and skin cancer induction,15,28 and also because
the dermis where they reside is targeted by UV-induced PAF.18

Results

cPAF impairs proliferation in mast cells. Conflicting
studies show that PAF activates or inhibits cell proliferation,
suggesting potential roles in tumor promotion or tumor
suppression.29 To understand the definitive role of PAF
on transformed human mast cells (HMC-1), we cultured
HMC-1 cells with 5 μg/ml of carbamyl PAF (cPAF), a

1Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Dipartimento Scienze della Vita e dell’Ambiente, Universita
Politecnica delle Marche, Ancona, Italy and 3The University of Texas, Graduate School for Biomedical Sciences, Houston, TX, USA
*Corresponding author: SE Ullrich, Department of Immunology University of Texas, MDAnderson Cancer Center, 1515 Holcombe Boulevard, Unit 902, Houston, TX 77030,
USA; Tel: +1 713 563 3264; Fax: +1 713 563 3280; E-mail: sullrich@mdanderson.org

Received 19.12.14; revised 16.3.15; accepted 17.3.15; Edited by H-U Simon

Abbreviations: ATM, Ataxia telangiectasia mutated; ATR, Ataxia telangiectasia and rad related; cPAF, carbamyl platelet-activating factor; CDK, Cyclin-dependent kinase;
CXCR4, Chemokine C-X-C motif receptor 4; ERK, Extracellular signal-regulated kinase; FACS, Fluorescence activated cell sorting; GADD45, Growth arrest and DNA
damage-inducible 45; HMC-1, Human mast cell line 1; PAF, Platelet-activating factor; PCNA, Proliferating cell nuclear antigen; UV, Ultraviolet

Citation: Cell Death and Disease (2015) 6, e1745; doi:10.1038/cddis.2015.115
& 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2015.115
mailto:sullrich@mdanderson.org
http://dx.doi.org/10.1038/cddis.2015.115
http://www.nature.com/cddis


non-hydrolysable bioactive PAF agonist, and observed a
significant decline in cell proliferation (Figure 1a). Similarly,
the rate of incorporation of the thymidine analog ethynyl
deoxyuridine (EdU) into DNA declined after cPAF exposure,
in a dose- and time-dependent manner (Figure 1b). PAF
treatment also had a similar effect in nontransformed cells.
Normal mast cells were isolated from a buffy coat and treated
with cPAF as described above. Although these cells had a
lower basal rate of cellular growth, cPAF treatment also
induced a dose-dependent decrease in proliferation
(Figure 1c). These results indicate that the cellular response
to cPAF is not affected by transformation.

cPAF induces cell cycle arrest at G2–M. To identify the
compartments of the cell cycle affected by cPAF, we stained
EdU+ cells with propidium iodide and calculated the
percentage of proliferating cells. We detected a dose-
dependent reduction in DNA synthesis (S phase), and arrest
at G2–M, 24 and 48 h after cPAF treatment (Figure 2). A less
pronounced but similar effect was observed at the G0–G1
phase 24 and 48 h after cPAF treatment. This indicates that
cPAF causes a long lasting effect at G2–M, reminiscent of
chemotherapeutic drugs affecting G2–M transition.30,31

Because cPAF largely arrests cells at G2–M, we sought to
determine the targets altered during this process. We used
fluorescently-labeled cell sorting to separate EdU- from EdU+

HMC-1 cells 24 h after cPAF exposure. Protein lysates were
analyzed using reverse phase protein arrays (RPPA).32 The
RPPA results (Supplementary Figure 1) indicated that cPAF
reduces the expression of CDK1 (cyclin-dependent kinase)
and cyclin-B1, critical for G2–M transition, and of cyclins D1
and E1, E2F1, and CDK2, essential at G0–G1. These results
agree with the fluorescence-activated cell sorting (FACS)
analysis indicating that cPAFarrests cells mainly at G2–M and
G0–G1 (Figure 2). These observations were confirmed by
immunoblotting, in which a dose-dependent decline was
observed in cyclin-B1 and CDK1 expression. We also
observed a slight decrease in cyclin-D1 and CDK2/4, which
are essential at G0–G1. In addition, the highest dose of cPAF
induced a consistent decrease in c-Myc (Figure 3a), likely
affecting the expression of its downstream target, cyclin-D1.33

Similar changes were observed for cyclin-B1 after exposing
primary mast cells to cPAF (Figure 3b), thus confirming that
the effects of cPAF were not restricted nor affected by
transformation. Next, we conducted experiments to confirm
that the effect of cPAF was similar to that of naturally occurring
PAF. Natural PAF has a shorter life and is more susceptible to
enzymatic degradation as compared with cPAF;34 this makes
cPAF a reliable choice to study PAF effector functions. As
expected, natural PAF showed a strong activation of p21 3-h
post exposure, and a decrease of cyclin-B1 6-h after exposure
(Figures 3c and d). These results indicate that the effector
function of cPAF closely resembles that of natural PAF,
although the latter is more susceptible to degradation and
thus its effects occurred within shorter incubation times.

cPAF effect on the G2–M mitotic complex. The G2–M
DNA damage checkpoint prevents eukaryotic cells from
entering mitosis allowing for proper repair of damaged
DNA, thereby preventing genomic instability.35 The G2–M

mitotic transition is regulated by cyclin-dependent kinase 1
(CDK1) that associates with the regulator cyclin-B1. The
phosphorylation of Cdc2 at Tyr15 measures the activation
status of Cdc2 during progression into mitosis.36 Since a
significant decrease in cyclin-B1 and CDK1 was observed
24 h post-cPAF treatment (Figure 3), we wanted to under-
stand how the expression of these proteins was modulated
during the first 24 h of cPAF exposure. We found a steady
decline in cyclin-B1, total CDK1 and p-Cdc2 (Tyr15) expres-
sion starting at 10-h post-cPAF treatment (Figure 4a). The
levels of cyclin-B1 and p-Cdc2 (Tyr15) reached their lowest at
22–24-h post-cPAF treatment, as opposed to the control
samples (Figure 4b). The cPAF-induced reduction in these
proteins was similar in HMC-1 cells synchronized at G0 by
serum starvation (Supplementary Figure 2). Because serum
deprivation affected the viability of HMC-1 cells, but not the
cPAF-induced modulation of cyclin-B1, CDK1, and p-Cdc2
(Tyr15) expression, we decided to avoid it in our subsequent
experiments. To quantify differences in protein expression,
we obtained normalized blot densities for cyclin-B1, CDK1,
and p-Cdc2 (Tyr15; Figure 4d). Our results show that after
adding cPAF, cyclin-B1 expression peaked at 6 h and
gradually decreased over the remaining time, and total
CDK1 peaked at 2 h and followed a nearly flat trajectory
during the 24-h cPAF exposure. CDK1 expression did not
surpass the peak of p-Cdc2 (Tyr15), an indication of CDK1
inactivity, at earlier time points. However, the expression of
CDK1 remained higher than p-Cdc2 (Tyr15) 14-h post-cPAF
exposure. These results indicate that while the phosphoryla-
tion of Cdc2 decreases, an indication of active CDK1, the
level of cyclin-B1 does not recover to resume cell cycle
progression. This appears to be sufficient to keep cells
arrested at G2. To assess whether an inhibitor of the CDK1/
cyclin-B1 complex resulted from cPAF exposure, we ana-
lyzed the expression of growth arrest and DNA damage-
inducible 45 (GADD45) during the same 24-h period. Our
results indicate an increased expression of GADD45 at 22–
24 h, which coincides with the decreased expression of
CDK1/cyclin-B1, suggesting that GADD45 might be affecting
this complex (Figure 4c). Finally, to determine whether cPAF
activates the MAPK pathway in HMC-1 cells, as has been
shown with other innate immune cells,37 we measured the
activation of extracellular signal-regulated kinase (ERK). Our
results indicate a decrease in activated ERK starting 8-h
post-cPAF exposure (Supplementary Figure 3), suggesting
that cPAF might also affect cell cycle entry through this
mechanism.38

cPAF exposure increases p21 expression. Because p21
regulates cell proliferation through its involvement with
proliferating cell nuclear antigen (PCNA), we determined
whether cPAF affected this interaction. cPAF induced a
measurable reduction in PCNA expression (Figure 5a).
Conversely, the expression of p21 showed a dose-
dependent increase. These findings indicate that cPAF may
reduce cell proliferation by unbalancing the interaction
between PCNA and p21 to the extent that abundance
of p21 may result in higher occupation of PCNA sites,
thereby preventing PCNA-driven cell proliferation.39 To
determine whether this was the case, we performed
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Figure 1 PAF suppresses cell proliferation. (a) HMC-1 cells, at the indicated densities per well, were treated with cPAF and proliferation measured by dye conversion.
(b) Cells were treated with different concentrations of cPAF (0–5 μg/ml) and proliferation was measured by EdU incorporation. Cells were harvested 24- and 48-h post-cPAF
treatment. (c) Effect of cPAF on the proliferation of normal mast cells was measured by EdU incorporation
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immunoprecipitation assays, capturing with PCNA antibody
and blotting with anti-p21 (Figure 5b). As indicated by
immunoblotting and densitometry analysis, we found that
cPAF induced a dose-dependent increase in p21 bound to
PCNA (Figure 5b). Similarly, when anti-p21 was used as the
capture antibody and anti-PCNA antibody for immunoblotting,
we observed higher PCNA levels in control samples as
opposed to cPAF-treated samples (Figure 5b). These findings
indicate that cPAF-induced p21 expression likely leads to the
occupation of PCNA sites, impairing cell proliferation.
Next, we determined if cPAF-induced expression of p21

was associated with p53 activation. Although we observed a
discrete increase in p53 expression with robust expression of
p21 in PAF-treated mast cells (Figure 5c), we wanted to
determine whether PAF-induced p21 expression was asso-
ciated with p53 upregulation in different cell types. We
exposed HCT-16 cells, carrying wild-type p53, and p53-
deficient Saos-2 cells to different doses of cPAF. Our results
indicate that while cPAF failed to induce p21 expression in

Saos-2 cells, it induced a robust expression of p53 and p21 in
HCT-16 cells. These results indicate that cPAF-induced
expression of p21 is p53 dependent (Figure 5d). Next, to
identify the effect of cPAF on the phosphorylation of p53, we
use a panel of antibodies against the following phosphoryla-
tion sites: S15, S9, S37, S6, S46, S20, S392, and T81. We
observed that cPAF increased the expression of phosphory-
lated p53 at S392 (Figure 5e), probably enhancing its binding
capacity to the promoter region of p21 as described by Kapoor
and Lozano.40 Taken together, these findings unravel a novel
and yet undiscovered role of cPAF on key proteins critical for
cell proliferation that indicate a potential role in tumor
suppressor mechanisms.

cPAF drives transformed mast cells into apoptosis.
Because cPAF treatment impairs mast cell proliferation, it
was important to investigate the fate of these cells. Using
FACS and TUNEL (terminal deoxynucleotidyltransferase-
mediated dUTP-biotin nick end labeling) analyses, we
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Figure 2 cPAF disrupts cell cycle progression. HMC-1 cells were treated with different doses of cPAF, and incubated for 24 and 48 h. Cells positive for propidium iodide but
negative for EdU were increased at G2–M and G0–G1. The number of double positive cells (PI+ and EdU+), indicative of DNA synthesis, was decreased in cells treated with cPAF
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observed that cPAF-exposed HMC-1 cells undergo apoptosis
in a concentration-dependent manner (Figure 6a). We also
measured the expression of cleaved PARP-1 and cleaved
caspase 3 by immunoblotting following cPAF exposure and
observed a steady induction of cleaved PARP-1 starting at
6 h and a gradual increase in cleaved caspase 3 starting at
10 h (Figure 6b). We also determined the accumulation of
fragmented DNA from apoptotic cells by measuring the
expression of γ-H2AX during the same time period. Our
results show that, in line with the expression of cleaved
PARP-1 and caspase 3, the dying cells also accumulate
increasing amounts of phosphorylated H2AX (Figure 6b).
This indicates that cPAF-induced impaired cell proliferation is
followed by apoptosis.

cPAF impairs the DNA damage response. The process of
DNA repair is inherently linked to cell cycle progression and
its checkpoints. To determine whether cPAF also affected
components of the DNA damage repair mechanism, we
measured the protein expression of several factors critical in
this process, including ATR, ATR-interacting protein and
microcephalin/BRIT-1. Our results show that cPAF decreases
BRIT-1 levels, critical for the repair of ionizing radiation and
UV-related DNA damage, in a concentration-dependent
manner (Figure 7a). Similarly, cPAF induced a moderate
decrease in ATR and ATR-interacting protein in HMC-1 cells.
This indicates that cPAF might impair a proper DNA damage
response if cells are exposed to damaging agents. To test
this, we asked whether cPAF affected the localization of
p-ATR and p-ATM to sites of DNA damage. Briefly, we placed
keratinocyte monolayers (HaCat) onto multi-chamber slides;

the cells were pre-incubated with cPAF for 24 and 48 h
followed by UV or ionizing radiation (IR). Immunofluores-
cence staining demonstrated that cells exposed to cPAF
followed by UV exposure, had a lower number of p-ATR
(S428)-positive foci, as compared with the controls (Figures
7b and c). Similarly, cells that were exposed to IR had a lower
number of localized p-ATM (S1981)-positive foci when
compared with the controls (Figures 7b and c). These
observations indicate that cPAF disrupts both the cell cycle
and the DNA repair mechanism, potentially increasing the
risk of genomic instability.
The recruitment of the phosphorylated form of histone

H2AX (γ-H2AX) is another indication of a rapid DNA damage
response mechanism after cells are exposed to genomic
insults. Hence, the expression of γ-H2AX in cPAF- and UV-
exposed HMC-1 cells was analyzed. Our results show that
cPAF treatment delays the expression of γ-H2AX in UV-treated
mast cells, compared with cells exposed only to UV radiation
(Figure 7d). This suggests that the presence of cPAF hampers
the repair of DNA damage induced by UV exposure.

Discussion

Exposure to moderate UV doses results in the release of PAF
by irradiated keratinocytes.13,41 Previous studies have shown
that PAF has an important role in UV-induced immune
suppression3–5,42 and skin carcinogenesis, in part by sup-
pressing DNA repair.21 Here we demonstrate that PAF
profoundly affects key components that regulate the cell cycle
and DNA damage response in mast cells and keratinocytes.
Contradicting previous reports indicating that PAF promotes
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proliferation in keratinocytes43 and metastasis in a variety of
tumor cells,29 we demonstrate that in HMC-1 cPAF, a non-
hydrolysable PAF analog, suppresses rather than accelerates
cell growth (Figure 1a), suggesting a potential function in
tumor suppression. cPAF also affected normal mast cells
demonstrating that its effect was not exclusive to transformed
cells (Figures 1b and c).
FACS analysis showed that cPAF exposure induces a

potent reduction in DNA synthesis, and a significant arrest at
G2–M. However, cPAF only had a discrete effect at G0–G1
(Figure 2). Our initial findings obtained by RPPA identified key
regulators of the cell cycle affected by cPAF (Supplementary

Figure 1). RPPA analysis showed that cPAF downregulated
proteins actively involved in the cell cycle including cyclin-B1,
CDK1, cyclins D1/E, and CDK2. We next observed that cPAF
promotes a continuous degradation of cyclin-B1 in a
concentration-dependent manner to almost null levels 24-
and 48-h post exposure (Figure 3). These results and our
previous observations indicated that the cPAF-induced cyto-
static effect in HMC-1 cells is predominantly at G2–M through
the disruption of the CDK1/cyclin-B1 mitosis-promoting
complex,44–47 suggesting that cPAF-induced reduction of
cyclin-B1 expression forces cells to exit from mitosis.46 The
effect of cPAF on cyclin-B1 in transformed cells underscores
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potential therapeutic applications of this phospholipid, since
cyclin-B1 is a regulator of the CDK1/cyclin-B1 complex, and is
critical for mitotic progression.45,46 In addition, cPAF also
induced a consistent decrease in c-Myc expression through-
out all our experiments, providing further evidence it is a potent
suppressor of cellular proliferation.
In our experiments the effects of cPAF resemble those of

naturally occurring PAF, with few minor differences. Whereas
most of cPAF-induced changes occurred at the end of 24 h of
exposure, natural PAF induced changes in p21 and cyclin-B1
expression within the first 6 h of exposure. This difference can
be explained by the incorporation of the carbamyl radical to
PAF, which makes it more resistant to metabolic degradation
without compromising its biological activities.34

To understand how cPAF affected key components regulat-
ing the G2–M mitotic complex, we studied the fluctuation of
cyclin-B1, CDK1, and p-Cdc2 (Tyr15) during a 24-h time
frame. Our results clearly indicate that cPAF depresses
expression of cyclin-B1, coinciding with the reduced phos-
phorylation of Cdc2 at Tyr15 and reduced expression of total
CDK1 starting 10 h following cPAF addition. As observed by
the peak in the expression of cyclin-B1, and comparedwith the
controls, cPAF seems to accelerate the cells into mitosis;
indeed, cyclin-B1 reaches its maximum after 6 h but never
recovers to resume cell cycle. The effect of cPAF on cyclin-B1
is unique because the decrease in p-Cdc2 (Tyr15) at 22–24-h
post-cPAF exposure shows that CDK1 is readily active to
resume cell cycle progression, however, the decreased
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expression in cyclin-B1 likely impairs this process and blocks
the cells from entering mitosis. Another mechanism
that prevents cell cycle entry is the reduction in ERK
activity,38 and in this study we found that cPAF exposure
reduces the expression of activated ERK (Supplementary
Figure 3). This finding is in contradiction to previous observa-
tions in colorectal cell lines showing PAF-induced increased
activation of ERK and p38MAPK. This difference is probably
due to the diverse effects of PAF in different cellular contexts.48

Our studies provide further evidence that the CDK1/cyclin-
B1 complex could also be affected by the dual induction of p21
and GADD45 after cPAF exposure. First, PAF-induced p53-
dependent induction of p21 leads to the disruption of PCNA-
controlled cell proliferation, contributing to arrest at G0–G1.
Second, cPAF-induced increased expression of GADD45,
which is described as an inhibitor of the G2–M complex,49–51

and is involved in its checkpoint after UV damage,52 could be
having a major role in the cell cycle arrest at G2.53 The
evidence we show here indicates that cPAF might be affecting
other compartments of the cell cycle, however our results
show that by disrupting cyclin-B1, G2–M is central to cPAF
activity in HMC-1 cells. On the other hand, the decreased cell
proliferation and the effect at G2–M also coincide with
the cPAF-induced reduction in c-Myc, cyclin-D1, and the
cyclin-dependent kinases CDK4 and CDK2 (Figure 3a).

As a consequence of the cPAF-induced arrest at G2–M, the
HMC-1 cells show a robust expression of cleaved PARP-1
combined with an increase in cleaved caspase 3 and γ-H2AX
(Figure 6). This indicates that PAF-treated cells stall at G2–M,
undergo mitotic catastrophe,54 and accumulate damaged
DNA originated from apoptotic fragmentation55 or stalled DNA
replication.56 Thus, cPAF-induced cell cycle arrest at G2–M is
followed by apoptosis in HMC-1 cells.
An effective DNA damage responsemechanism is critical to

maintain genomic stability. Our previous studies suggest that
cPAF might be affecting the capacity of UV-exposed cells to
efficiently repair damaged DNA.21 Here we show that cPAF
exposure induces a significant reduction in critical DNA repair
components including ATR, ATR-interacting protein, and Brit1.
Using this as reference we tested whether cPAF affected the
capacity of cells to mount an early DNA damage response.
HMC-1 cells incubated with cPAF and exposed to either
UV or ionizing radiation, showed an important decrease
in the recruitment of DNA damage response proteins p-ATR
(S428)57,58 and p-ATM (S1981),59 respectively. Therefore,
although extended exposure to cPAF leads to mitotic
catastrophe and apoptosis, early events indicate that cPAF
disrupts a proper DNA damage response upon genomic insult.
This suggests that while PAF is released during chronic
inflammatory conditions, or during direct exposure to UV-
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damaging agents (i.e., sunlight) it is likely that neighboring
cells are affected in their capacity to reduce the deleterious
effects of these agents.
PAF is released by keratinocytes following low to moderate

UV exposure,13,14 suggesting that keratinocytes release PAF

on a regular basis. Most of the studies examining the effect of
PAF on immune function and carcinogenesis suggest it has a
negative effect, so the evolutionary advantage of daily release
of this inflammatory mediator that has such deleterious effects
is not readily apparent. The findings presented here may shed
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some light on the role of PAF in normal and inflamed skin. UV
radiation is highly mutagenic and after an acute exposure to
low to moderate doses of sunlight, PAF, by inducing cell cycle
arrest and promoting apoptosis, may help accelerate the
removal of DNA damaged cells from the skin, thus promoting
genomic stability. On the other hand, after chronic UV
exposure, and coupled with UV-induced inactivation of
p53,60 PAF suppresses effective DNA repair and promotes
tumor growth. By depressing DNA repair, PAF may also
augment immune suppression, as studies by Kripke et al.61

clearly demonstrated that DNA lesions, particularly pyrimidine
dimer formation activate immune suppression. We suggest
that PAF has dual functions. In normal skin, it can promote
apoptosis and maintain normal homeostasis. However,
in chronically irradiated inflamed skin, where one finds
UV-induced inactivation of normal tumor suppressor pathways
(i.e., p53, PTEN), PAF acts as a classic mediator of
inflammation, and through its ability to depress DNA repair
contributes to skin cancer induction.

Materials and Methods
Cell culture. HMC-1 cells (kindly provided by Dr. JH Butterfield, Mayo Clinic,
Rochester, MN, USA)62 were cultured using RPMI-1640 medium enriched with
vitamins, non-essential amino acids, and fetal bovine serum (10%) under standard
culture conditions. In some experiments HaCat cells (kindly provided by Professor
Norbert Fusenig, German Cancer Research Center, Heidelberg, Germany)63 were
used. These cells were cultured as described above. Cell lines were validated by
STR DNA finger printing by the MD Anderson Cancer Center Characterized Cell
Line Core using the AmpFℓSTR Identifier kit according to manufacturer instructions
(Applied Biosystems cat 4322288). The STR profiles were compared to known
ATCC fingerprints (ATCC.org), to the Cell Line Integrated Molecular Authentication
database (CLIMA) version 0.1.200808 (http://bioinformatics.istge.it/clima/)64 and to
the MD Anderson fingerprint database. The STR profiles matched known DNA
fingerprints or were unique.

Isolation of normal mast cells. Normal mast cells were isolated from an
adult blood buffy coat obtained from an undisclosed healthy donor from the Gulf Coast
Regional Blood Center (Human Research Protocol LAB-03-0390- MDACC), by partially
depleting T and B cells followed by cell sorting using anti-CD34 antibody. CD34+ cells
were cultured in Stempro medium enriched with IL-6, IL-3, human recombinant stem
cell factor, interleukin-6, and interleukin-3. After several weeks in culture, all the viable
cells stained positive for toluidine blue, tryptase, and were CD117+ (cKit).

Cell proliferation. The rate of proliferation was analyzed using Alamar blue
according to the manufacturer’s instructions (Life Technologies, Carlsbad, CA,
USA), as described previously.65 Briefly, we cultured 1 × 104 and 1 × 103 HMC-1
cells in 96-well plates with and without cPAF (Cayman Laboratories, Ann Arbor, MI,
USA) for 24 h. After incubation, we resuspended the cells in fresh medium for
another 64 h, and the rate of proliferation was analyzed every 4 h by Alamar blue.
The conversion of the nonfluorescent indicator dye to a bright red color by
metabolically active cells was monitored using a microplate reader. In addition, we
also used the thymidine analog EdU after cells were treated with cPAF; the cells
were incubated for 24 and 48 h at different concentrations of cPAF (1.25, 2.5, and
5 μg/ml), followed by 2 h incubation with EdU (10 μM) in cPAF-free medium. EdU-
positive cells were identified using Alexa Fluor 488 Click-iT reaction kit (Life
Technologies), followed by propidium iodide staining. Cells were plotted according to
their DNA content and EdU-Alexa 488 staining to determine the number of cells in
different phases of the cell cycle.

Immunoblotting. Protein samples were obtained from treated and nontreated
cells using RIPA lysing buffer. Briefly, cell pellets were resuspended in lysing buffer
and immediately frozen at − 80 oC. BCA protein assay was used to determine
protein concentrations (Pierce BCA Protein Assay kit, Thermo Scientific, Waltham,
MA, USA). The antibodies to detect cyclin-B1, cleaved caspase 3, c-Myc, Brit1,
ATR, γ-H2AX, p-cdc2, cyclin-D1, p-ATM (S1981), p-ATR (S428), p-ERK, ERK,

GADD45, and p-p53 (S15, S9, S37, S6, S46, S20, S392, and T81) were used at
1 : 1000 dilution (Cell Signaling Labs, Danvers, MA, USA); antibodies to p21, cyclin
A and CDK1 were used at 1 : 1000 dilution (Becton Dickinson, San Jose, CA, USA);
antibodies to p53 (DO-1), CDK2, and CDK4 were used at 1 : 500 dilution (Santa
Cruz Biotechnology, Dallas, TX, USA); the antibody to p84 was used at 1 : 1000
dilution (Genetex, Kennesaw, GA, USA); the antibody to PCNA was used at 1 : 1000
dilution (Dako Laboratories, Carpinteria, CA, USA). Natural PAF was purchased
from Cayman Laboratories. Densitometry analysis, when necessary, was performed
using ImageJ software (http://imagej.nih.gov/ij/).

Analysis of the cell cycle. After each treatment cells were further incubated
for 2 h with 10 μM EdU in cPAF-free medium. The cells were fixed and the
incorporated EdU analog was detected following the manufacturer’s instructions (Click
it, Invitrogen); as a final step, the cells were incubated with P.I. staining solution
containing RNAse. The cells were analyzed using LSRII or Fortessa flow cytometers.
Data acquisition was carried out using Diva software (BD Biosciences, San Jose, CA,
USA) and further analyzed using FlowJo software (Ashland, OR, USA).

TUNEL assay. TUNEL (Promega, Madison, WI, USA) was performed on HMC-1
cells. Briefly, DNA strand breaks were labeled with fluorescein-12-dUTP. The green
fluorescence of apoptotic cells was detected by fluorescence activation cell sorting.

Assessment of DNA damage response. HMC-1 cells were pre-cultured
for 24 h with 5 μg/ml of cPAF followed by UVB (200 J/m2; 290–320 nm) or IR (10 Gy).
Cells were allowed to recover for 1 h and then were fixed with 4% paraformaldehyde
for 10 min. Cells exposed to UV light were stained against p-ATR and those exposed
to IR stained against p-ATM, as a measure of DNA damage response.
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