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APP intracellular domain acts as a transcriptional
regulator of miR-663 suppressing neuronal
differentiation

R Shu1,2,3, W Wong4,5,6, QH Ma7, ZZ Yang1,2, H Zhu1,2, FJ Liu3,8, P Wang9, J Ma1, S Yan2, JM Polo1,3, CCA Bernard3,
LW Stanton*,10, GS Dawe*,4,5,6 and ZC Xiao*,1,2

Amyloid precursor protein (APP) is best known for its involvement in the pathogenesis of Alzheimer’s disease. We have previously
demonstrated that APP intracellular domain (AICD) regulates neurogenesis; however, the mechanisms underlying AICD-mediated
regulation of neuronal differentiation are not yet fully characterized. Using genome-wide chromatin immunoprecipitation
approaches, we found that AICD is specifically recruited to the regulatory regions of several microRNA genes, and acts as a
transcriptional regulator for miR-663, miR-3648 and miR-3687 in human neural stem cells. Functional assays show that AICD
negatively modulates neuronal differentiation through miR-663, a primate-specific microRNA. Microarray data further demonstrate
that miR-663 suppresses the expression of multiple genes implicated in neurogenesis, including FBXL18 and CDK6. Our results
indicate that AICD has a novel role in suppression of neuronal differentiation via transcriptional regulation of miR-663 in human
neural stem cells.
Cell Death and Disease (2015) 6, e1651; doi:10.1038/cddis.2015.10; published online 19 February 2015

Amyloid precursor protein (APP), a ubiquitous type I trans-
membrane receptor, is processed by α-, β- and γ-secretase
enzymes in two distinct cascades. Processing of APP by
β- and γ-secretase in the amyloidogenic cascade leads to
release of amyloid beta peptide (Aβ), while in the nonamyloi-
dogenic pathway, mediated by α- and γ-secretase, Aβ is not
produced. The biological role of Aβ has been the focus of
considerable research interest as it is associated with the
formation of amyloid plaques in the pathology of Alzheimer’s
disease (AD).1 However, the function of the APP intracellular
domain (AICD), another APP-derived cleavage product,
remains incompletely understood.2 Over the past decades,
AICD has sparked research interest for its roles in apoptosis,
synaptic plasticity and neural development.3,4 In addition,
AICD transgenic or knock-in mutant animal models have been
reported to display AD-like pathological features, such as
neuronal loss, tau aggregation, neuroinflammation, impaired
neurogenesis and cognitive performance.5–10

MicroRNAs (miRNAs) are widely distributed, small, non-
coding RNA molecules that have emerged as post-

transcriptional regulators of genes involved in developmental
processes and disease.11 In the nervous system, some
miRNAs act as key post-transcriptional regulators in neuro-
genesis, axonal pathfinding, apoptosis and synaptic
plasticity.12,13 Moreover, several miRNA-profiling studies have
shown that miRNA expression patterns are altered in AD
brains and peripheral tissues. However, whether the changes
of miRNA pattern are the cause or the consequence of the
disease remains elusive.14

We have previously shown that transient axonal
glycoprotein-1 interacts with APP as a novel ligand, and this
interaction results in the inhibition of neurogenesis through an
AICD-mediated action.15,16 Upon processing of APP, AICD is
released and translocates into the nucleus. Once AICD is in
the nucleus, it can influence gene transcription.17,18 A recent
in vivo study showed that APP could regulate neurogenesis by
antagonizing miR-574-5p in the developing cerebral cortex of
mice.19 However, the molecular mechanism by which APP
inhibits neural stem cell (NSC) differentiation remains to be
determined.
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In this study, we hypothesized that APP might influence
physiological processes, such as neurogenesis, via direct
binding of AICD to the miRNA-embedding genomic region. To
test this hypothesis, we applied a genome-wide search for
AICD-regulated miRNAs, using chromatin immunoprecipita-
tion coupled with deep DNA sequencing (ChIP-seq), and then
selected dozens of candidate miRNAs to validate their
regulation by AICD as well as their role in the neuronal
differentiation of human neural stem cells (hNSCs). Our
findings demonstrate that AICD binds to regulatory regions
of specific miRNAs in human genome and suppresses
neuronal differentiation through transcriptional regulation of
miR-663.

Results

Distribution of the AICD ChIP-seq miRNA-binding peaks.
In the genome, miRNAs are located either between inde-
pendent transcription units (intergenic), or in the intronic or
exonic regions of genes. The intergenic miRNAs are
transcribed independently, whereas the intronic and exonic
miRNAs may be transcribed with their host genes. To
comprehensively identify AICD-binding sites within the
promoter regions of miRNAs, duplicate ChIP-seq experi-
ments were performed in SH-SY5Y cells. The AICD-binding
sites generated from the two data sets were mapped on the
genome relative to the nearest miRNAs and annotated with
respect to their distance from the miRNA stem–loop start
sites (SSS; Supplementary Tables S1 and S2). Analysis of
the pooled data showed that AICD binds to 576 sites
corresponding to 304 miRNAs in set 1, and 478 sites
corresponding to 263 miRNAs in set 2, with an overlap of
207 miRNAs (Figures 1a–c). These results suggest that the
binding between AICD and miRNA regions is highly
reproducible through the ChIP-seq assays. Notably, most
reported AICD-regulated genes were also found in our ChIP-
seq data, representing robust controls for verifying the
reliability of our ChIP-seq data (Supplementary Table S3).
Genome analysis of the ChIP-seq data shows that most

AICD-binding sites for miRNAs are enriched in intergenic and
intronic regions, but not in the promoter regions of protein-
coding genes (Figures 1a and b), as most of the miRNAs are
located in the intergenic or intronic regions.20 As we know,
nearly all the intergenic miRNAs and ~ 35% of the intronic
miRNAs, which consist of the majority of miRNAs, have their
own promoters,21,22 whereas theChIP-seq-binding sites in our
study are not randomly distributed but are enriched in the
proximal miRNA SSS (Figures 1d and e). Taken together, our
data indicate that AICD binds to the upstream regulatory
elements of these miRNAs.

Functional annotation of the AICD-regulated miRNAs.
Within the 207 miRNAs identified in the two ChIP-seq data
sets, 93 miRNAs are associated with 1471 validated target
genes according to the miRWalk database (Supplementary
Table S4).23 Meanwhile, 93 randomly selected miRNAs,
which were not in our ChIP-seq data sets, were used as
controls. Using functional annotation clustering (FAC), we
compared the enrichment of gene ontology terms between

the AICD and control miRNA group.24 The outcome suggests
that the best-known functions of AICD are enriched in the
AICD-regulated miRNAs (Figure 1f and Supplementary Table
S5). Therefore, we hypothesized that AICD may perform its
roles through regulating miRNAs. To test this hypothesis,
these miRNAs should be validated step-by-step through
ChIP, miRNA expression and functional assays, as well as
target gene identification.

Validation of selected AICD-regulated miRNAs using
ChIP. To select high-priority candidates, the miRNAs from
the two ChIP-seq data sets were ranked by 'peak score'
(Figures 2a and b; Supplementary Tables S1and S2). From
the top 20 binding sites of the two sets (R1: Figure 2a; R2:
Figure 2b), 12 miRNAs were found in common and were
selected for further evaluation (Figure 2c and Table 1). Given
that the regulation of gene expression through AICD is
affected by the chromatin status of cell types,25 we chose the
ReNcell VM (RVM) hNSC,26 a more physiological relevant
cell type, for further study of the neurogenesis. To confirm
AICD-specific binding at the genomic locations of the 12
miRNA genes (Table 1), we performed independent ChIP-
PCR experiments in SH-SY5Y cells and hNSCs using
another high specificity anti-AICD antibody (Supplementary
Figure S1). These ChIP-PCR assays, using primer pairs for
the 12 specified gene locations, confirmed that seven
chromatin regions relevant to mir-3687, mir-3648, let-7a-1,
mir-663, mir-3910, mir-193a and mir-595, were significantly
enriched in both cell types (Figures 2d and e). Thus, these
data demonstrate that AICD interacts with the chromatin
regions of mir-3648, mir-3687, let-7a-1, mir-663, mir-3910,
mir-193a and mir-595.

AICD modulates the expression of miRNAs in hNSCs in a
dual regulatory manner. AICD has been previously shown
to contribute to the regulation of gene expression in a dual
regulatory manner, both increasing and decreasing the
expression of various genes.3 To reveal the biological
significance of AICD-regulated miRNAs, we transduced
AICD expression vector into hNSCs using a lentiviral vector
and assessed the expression of the miRNAs using quanti-
tative PCR (qPCR). After overexpression of AICD, the
expression levels of miR-663 significantly increased, and
those of both miR-3648 and miR-3687 were significantly
decreased (Figure 2f). These results demonstrate that AICD
may modulate the expression miRNAs in a dual regulatory
manner.
As the binding sites for mir-663, mir-3648 and mir-3687

were situated near to the SSS of these miRNAs, the
embedded regions were scanned using ChIP in both AICD-
overexpressed and wild-type hNSCs. We found that the index
of AICD-binding enrichment was significantly increased at
regions of − 1150, −154 and +375 bp away from the mir-663
SSS, but not at more distant regions or the control gapdh
promoter region (Figure 2g). The mir-3648 and mir-3687 were
clustered together in the genome, and the index of enrichment
was significantly increased at −247 and +206 bp from the mir-
3648 SSS, but not at more distant regions or gapdh promoter
region (Figure 2h). Similarly, ChIP-PCR validations were
performed in wild-type hNSCs, and the result confirmed the
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interactions between the endogenous AICD and these regions
(Figures 2i and j). Because the cis-acting elements are
indicators of promoter activity, we questioned whether these
two AICD-binding regions could be regulatory regions for
these miRNAs. To this end, the distribution of Encyclopedia of
DNA Elements (ENCODE) sites and CpG islands were
retrieved from the UCSC Genome Browser.27 We found that
the ENCODE sites and CpG islands were enriched in these
regions. In addition, the distributions of ENCODE peaks were
highly consistent with the distribution of our AICD ChIP
enrichments in these regions (Supplementary Figure S2).

Therefore, these data indicate that AICD is recruited to the
transcriptional regulatory regions of these miRNA genes.

AICD suppresses the neuronal differentiation of hNSCs.
We have previously reported that AICD negatively regulates
the neurogenesis of mouse NSC,15 a finding that was also
supported by studies in the AICD transgenic mouse model.6

However, data from AD patients and a number of mouse AD
models have revealed apparent conflicts with respect to
whether neurogenesis is up- or downregulated.28 To inves-
tigate whether AICD restricts human neuronal differentiation,
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we overexpressed AICD in hNSCs, and we found that the
number of neuronal-like cells in the AICD-transfected group
was significantly decreased in comparison with the control
group as demonstrated by expression of the neuronal marker
βIII-tubulin (Figures 3a and b).

miR-663 suppresses neuronal differentiation of hNSCs.
To determine which of the AICD-regulated miRNAs are
involved in inhibiting neuronal differentiation, we transfected
molecular mimics of miR-663, miR-3687 or miR-3648 into
hNSCs. After differentiation, the transfected hNSCs were
assessed for neuronal differentiation by flow cytometry and
immunohistochemistry, using antibodies against βIII-tubulin.
Flow cytometry analysis showed that the number of βIII-
tubulin-positive cells was significantly decreased in cells
overexpressing miR-663 (Figures 3c and d), but not in those
overexpressing miR-3648 or miR-3687 (Supplementary
Figures S3a and b). Similar results were obtained by
quantitative analyses of the immunohistochemistry (Figures
3e and f, Supplementary Figures S3c and d). We also
estimated the percentage of βIII-tubulin-positive cells after
transfection of the corresponding antisense inhibitors and the
percentage of GFAP (an astroglial marker)-positive cells after
transfection with the miRNAs; however, no significant
changes were detected (Supplementary Figures S3e–h).
These results demonstrate that, among the AICD-regulated
miRNAs, miR-663 mediates suppression of neuronal differ-
entiation in hNSCs.
To further confirm that AICD inhibits neuronal differentiation

through miR-663, we investigated whether inhibition of
miR-663 could rescue AICD-mediated suppression of neuro-
nal differentiation. hNSCs were co-transfected with miR-663
antisense inhibitor and AICD. After differentiation, both flow
cytometry and immunohistochemistry showed that the num-
ber of βIII-tubulin-positive cells was significantly increased
after co-transfection of miR-663 antisense inhibitor with AICD
(Figures 3g–j). These observations indicate that miR-663 is a
mediator for the AICD suppression of neuronal differentiation
in hNSCs.

miR-663 targets multiple genes in hNSCs. Vertebrate
miRNAs have been reported to target multiple genes at the
transcriptional level through interaction with untranslated

regions (UTRs) to perform their biological function.29–31

Interestingly, miR-663, a member of primate-specific miRNA
family, has recently been found to be associated with cancer,
through the regulation of different target genes in cancer
cells.32,33 To identify the genes targeted by miR-663 in
hNSCs, the miR-663 mimics were transfected into hNSCs,
and mRNA was purified and profiled on gene expression
microarrays (Supplementary Figure S4a). We found that 123
and 253 genes were significantly downregulated (Po0.001)
at 12 and 24 h after miR-633 transfection, respectively. In
addition, 91 genes were significantly downregulated at both
12 and 24 h (Figure 4a and Supplementary Table S6).
In order to predict and identify the possible target genes

of miR-663 among the genes with differential expression,
we checked whether any are predicted targets using
Targetscan.29 We found that the predicted direct targets of
miR-663 were enriched in the downregulated genes as
compared with the total genes in the study, and greatly
enriched in the 91 downregulated genes (Figure 4b). Further-
more, we observed significantly over-representation of gene
inhibition among the Targetscan predicted genes as compared
with all the other downregulated genes (Figure 4c).34 To
evaluate the microarray-downregulated genes solely based
on the sequence motifs of their 30-UTRs, the motif discovery
tool MEME was used to computationally search the 30-UTR
sequences of the downregulated genes.35 We found a highly
significant consensus sequence 'CCCCGCCCC' in the
30-UTR sequences of the downregulated transcripts. This
consensusmotif was complementary to the positions 2–8 from
the 50 end of miR-663, the crucial seed region required for
target recognition (Figure 4d).31 Moreover, DIANA-mirExTra
hexamer analysis confirmed that the direct targets of miR-663
were enriched in the 91 downregulated genes (Figure 4e).36

AICD/miR-663-downregulated genes inhibit neuronal
differentiation. To identify downstream genes of AICD/
miR-663 signaling during neurogenesis, we performed gene
expression microarray analysis in AICD-overexpressing
hNSC cells. In brief, hNSCs were transduced by AICD, and
EGF and bFGF were withdrawn to stimulate cell differentia-
tion at 48 h post transduction, when miR-663 was upregu-
lated (Figure 2f). After another 24 h, total RNA was prepared
for microarray analysis. We found that 853 genes were

Table 1 Overlapped miRNA hits of the top 20 peaks from 2 ChIP-seq data sets

Description Chr Start End Peak score Annotation Distance to SSS (bp)

mir-3687a chr21 9825273 9827785 3100 TTS 321
mir-663 chr20 26188340 26191020 1783.49 Promoter-TSS −733
mir-548f-5 chr13 36531932 36532876 292.21 Intron − 17000
mir-122 chr18 56179601 56180702 215.02 Intron 61798
let-7a-1 chr9 96927827 96929643 212.295 Intergenic −9435
mir-3910-2 chr9 94472980 94474733 210.17 Intergenic − 75228
mir-592 chr7 125691975 125692956 188.995 Intergenic 1005759
mir-3648a chr21 9698762 9700581 188.45 Intergenic −126353
mir-193a chr17 29876126 29877625 186.215 Intergenic − 10141
mir-3943 chr7 43236886 43238815 181.425 Intron 47413
mir-1538 chr16 69599285 69600694 172.74 Promoter-TSS −136
mir-595 chr7 157939829 157940996 170.62 Intron 385055

amir-3687 and mir-3648 are clustered in the genome, and two different binding peaks are found for them
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Figure 3 AICD inhibits hNSC differentiation through miR-663. (a and b) Representative histograms (a) and quantification (b) of βIII-tubulin detection using flow cytometry in
differentiated hNSCs transfected with AICD and control (green: βIII-tubulin; gray: isotype control). (c and d) Representative histograms (c) and quantification (d) of βIII-tubulin
detection using flow cytometry in differentiated hNSCs transfected with miR-663 mimics and control (green: βIII-tubulin; gray: isotype control). (e and f) Representative images (e)
and quantification (f) of βIII-tubulin detection using immunohistochemistry in differentiated hNSCs transfected with miR-663 mimics and control. Scale bar= 200 μm. (g and h)
Representative histograms (g) and quantification (h) of βIII-tubulin detection using flow cytometry in differentiated hNSCs transfected with control vector plus non-targeting control
inhibitors (ctr In), AICD plus non-targeting control inhibitors, AICD plus miR-663 antisense inhibitors, respectively (green: βIII-tubulin; gray: isotype control). (i and j)
Representative images (i) and quantification (j) of βIII-tubulin detection by immunohistochemistry in differentiated hNSCs transfected with control vector plus non-targeting control
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significantly downregulated (Po0.05) after AICD overexpres-
sion (Supplementary Figure S4 and Table S7). Subsequently,
we intersected the miR-663-downregulated gene profiles
(Po0.001) with the AICD-downregulated gene expression
profile, and revealed that seven genes were downregulated
by both AICD and miR-663 (Figure 5a). In addition,
we overlapped the miR-663-downregulated gene profiles
(Po0.05; Supplementary Figure S4 and Table S8) with both
the AICD-downregulated gene expression profile and the
Targetscan-predicted genes of miR-663, and revealed that
another 11 genes were downregulated by both AICD and
miR-663 (Figure 5b). In total, we found 13 genes for further
validation (Figure 5c). After qPCR validation, eight genes
were selected for further flow cytometry analysis of neuronal
differentiation, and we found that siRNA knockdown of
PTP4A1, FBXL18, CDK6 and ZFAND3 resulted in significant
suppression of neuronal differentiation (Figure 5d). In
addition, the overall effect of knockdown of these genes
was the inhibition of neurogenesis in the hNSCs (Figure 5e).
To further determine which genes are the direct targets of
miR-633, wild-type and mutant UTR segments possessing
the seed matches from these four genes were cloned into
dual-luciferase vectors. When co-transfected with the
miR-663, repression of the reporter gene was observed in
the 30-UTR of the FBXL18 and 5’-UTR of the CDK6 in
comparison with the corresponding mutant UTRs (Figure 5f).
The reporter assay result demonstrates that AICD/miR-663
can downregulate the expression of FBXL18 and CDK6 directly.

Discussion

In the present study, using genome-wide ChIP-seq we have
identified a set of miRNAs regulated by AICD. Furthermore,
we have shown that AICD acts as a transcriptional regulator to
modulate the expression of miRNAs. Importantly, we have
demonstrated that miR-663 has an important role in suppres-
sing neuronal differentiation of hNSCs in vitro and have
identified an AICD downstream mechanism suppressing
neurogenesis in hNSCs (Figure 6).
APP is considered having a key role in the pathogenesis of

AD, as cleavage of APP produce Aβ peptide that is deposited
in the brain of AD patients. In addition to Aβ, the ectodomain of
APP has been reported to have neuroprotective effects and
mediate the physiological functions of APP.16 The intracellular
domain of APP is also believed to be functionally important, as
numerous proteins interact with this region to regulate the
processing and function of APP.8,37 However, there is
controversy over the transcriptional regulation of AICD. AICD
has been first implicated with transcriptional activity through
the Gal4 reporter assay.17 Following studies have demon-
strated that AICD regulates the transcription of genes,
including LRP1, KAI1, GSK-3β, neprilysin and EGFR.4 Our
results, we believe, resolved some of these discrepancies by
providing clues that AICD interacts with the chromatin directly
to affect transcription in both of the overexpression and
endogenous systems; nevertheless, the signal transduction
model of AICD and its relation with the binding proteins need to
be further explored. In addition, the APP family proteins,
APLP1 and APLP2, also have similar C terminus as APP.38

A recent study has shown the nuclear signaling function for

APP, and APLP2 is absent in APLP1.39 However, the specific
interactions of these proteins with chromatin, and the
differences of nuclear function among the APP family
members, need to be determined in the future.
AsmiRNAs are important regulators of gene expression, we

focus on the possibility that AICD modulates the expression of
miRNAs. In search for the miRNAs regulated by AICD, we
performed ChIP-seq experiments in APP695-overexpressing
cells, given that AICD turns over rapidly, whereas it is
preferentially produced from the APP695 isoform.40 It is
established that miRNAs are first transcribed as primary
miRNAs (pri-miRNAs).21,22 As the pri-miRNAs vary in length
from a few hundred bases up to hundreds of kilobases, the
regulatory regions for the miRNAs could be located up to
several megabases from the miRNA stem–loop sequence in
the genome.41,42 Consequently, a wider distance criterion
ranging within 2 megabases from the SSS was used to
associate the ChIP-seq peaks with miRNAs. Using our ChIP-
seq data, we discovered a set of AICD-regulated miRNAs, and
the subsequent FAC analysis suggested a promising potential
that AICD may regulate apoptosis and neurogenesis through
miRNAs. However, the wider distance criterion, together with
the overexpression system, could result in nonspecific binding
sites in the ChIP-seq data. For this reason, both ChIP
validation of endogenous binding and functional validation
are required in the specific cells before drawing any
conclusions.
In vivo neuronal development is a well-orchestrated process

containing several specific cell stages, such as immature
precursor, neuronally committed precursor, immature neuron
and mature neuron.43 A number of miRNAs have also been
demonstrated to regulate neural stem cell proliferation,
differentiation and maturation during the neuronal
development.44 miR-663, expressed only in Homo sapiens,
Macaca mulatta and Pantroglodytes, belongs to the primate-
specific miRNAs.45 The function of miR-663 has been
reported to be mainly associated with cancer biology.
In acute myeloid leukemia patients, the miR-663 promoter is
hypermethylated and influences leukemia cell differentiation.46,47

In addition, miR-663 targets the expression of multiple
genes, such as TGFβ1, p21, H-ras, eEF1 and HSPG2,
to regulate cancer cell proliferation and chemotherapy
resistance.32,33,48–50 Moreover, miR-663 is related to smooth
muscle cell phenotypic switch in the cardiovascular system.51

Briefly, these previous studies provide a clue that miR-663 is
able to influence cell proliferation and differentiation; however,
its role in the nervous system is not well understood. Our
findings show that miR-663 can decrease the number of βIII-
tubulin-positive cells during neuronal differentiation. Given that
miR-663 might influence the proliferation of hNSCs, we
performed a BrdU incorporation assay as well; however, no
significant differences were found (Supplementary Figure S5a
and b). We also evaluated the morphology of differentiated
neurons after miR-663 overexpression by measuring the
length of neurites. Preliminary result showed that miR-663
did not decreased the length significantly (Supplementary
Figure S5c). Therefore, the exact role of miR-663 at different
stages of the neuronal differentiation needs to be explored in
future studies.
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Figure 5 Genes downregulated by both miR-663 and AICD are associated with neurogenesis. (a) Three-way Venn diagram demonstrating the overlap among the miR-663
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As multiple different miR-663 target genes have been
reported, we hypothesized that miR-663 also targets
multiple genes to perform its function in the nervous system.
Using gene expression microarrays, we found that multiple
genes with miR-663 predicted that target sites were down-
regulated in hNSCs. After validation, we identified two direct
target genes, FBXL18 and CDK6, which could contribute to
the AICD/miR663 inhibition of neurogenesis. FBXL18 is a
member of F-box protein family, which could form the SKP1-
CUL1-F-box protein (SCF) complex to act as a protein
ubiquitin ligase,52 and some of the SCF complexes have
already been suggested to control neuronal differentiation,53,54

yet the exact role of FBXL18 remains to be demonstrated. The
other gene, CDK6, is essential for the expansion of neuronally
committed precursors and the production of newborn neurons.43

In addition, CDK6 is a mediator of PAX6’s modulation of
cortical progenitor cell proliferation.55 Therefore, it is possible
that miR-663 inhibits neuronal differentiation through CDK6.
The current study demonstrates that the abnormal proces-

sing of APP might lead to aberrant AICD regulation of miRNA
expression, which may be linked to abnormal intracellular
signaling. However, to address the relevance of miRNAs with
AD, further studies performed in vivo or in human tissue are
required. It is also important to acknowledge that only a small
fraction of miRNA candidates were selected according to the
peak-calling score and distance in this study. Interestingly,
the recently identified miR-574-5p, which is associated with the
neuronal inhibition by APP,19 is also included in both of the two
data sets of our ChIP-seq miRNAs (Supplementary Tables S1
and S2). However, the direct binding of AICD to the genomic
region surrounding miR-574 remains to be determined. Thus,
for the remaining miRNAs, their regulation by AICD and
biological roles need to be further defined in specific cell types
and biological assays. Considering the recent concern on the
confidence of the miRNA in the miRBase, the miRNA
candidates could also be filtered according to the confidence
of the miRNA in the future.56,57

In conclusion, the present study has identified the role of
AICD-regulated miR-663 in hNSC differentiation and provided
one molecular mechanistic insight into AICD signaling in
human neurogenesis in vitro. This may have ramifications in

the context of the physiological role of APP, as well as more
broadly in AD research. Further understanding of these
mechanisms might shed light on the cellular processes of
neurodegenerative diseases and may offer an opportunity for
pharmacological intervention.

Materials and Methods
ChIP-Seq. ChIP-seq was performed as previously described.58 A SH-SY5Y cell
line overexpressing APP was generated by the stable transfection of a pcDNA4
construct carrying APP. Nuclear lysates were cross-linked with 1.5 mM dithiobis
succinimidyl propionate (DSP) and 1% formaldehyde. Chromatin for the
immunoprecipitation was sheared to fragments below 500 bp. Quality-control
checks on the DNA were run using the Agilent Bioanalyzer 2100 (Mulgrave, VIC,
Australia). Antibody against C-terminal APP (BR188 from M. Goedert, University of
Cambridge, UK)25 and control rabbit IgG were used. Immunoprecipitated DNA from
ChIP experiments was subjected to deep DNA sequencing. The reads were aligned
against the hg19 Human Genome Assembly (GRCh37, February 2009) and peak
calling was performed using the MACS (Model-based Analysis for ChIP-Seq)
software.59 Significant binding sites within 2 megabases from the miRNA SSS were
selected as potential candidates.

Cell culture and transfection. The SH-SY5Y cell line was grown in
Dulbecco's modified Eagle's medium (DMEM; Gibco, Mulgrave, VIC, Australia),
supplemented with 10% heat-inactivated fetal bovine serum (Gibco), 1% penicillin/
streptomycin (Gibco). The RVM hNSC line (Millipore, Bayswater, VIC, Australia) was
cultured and differentiated according to the published protocols.26 For proliferation,
RVM cells were cultured in the RVM medium (DMEM/F12 medium (Gibco) with B27
(Gibco), 10 U/ml heparin (Sigma-aldrich, St. Louis, MO, USA) and 1% Gentamicin
(Gibco)) with 20 ng/ml EGF (Peprotech, Rocky Hill, NJ, USA) and 10 ng/ml bFGF
(Peprotech). For differentiation, the cells were seeded on laminin (Invitrogen,
Mulgrave, VIC, Australia)-coated plates, the EGF and bFGF were removed, and
1 mM dibutyrl-cAMP (Calbiochem, Lafayette, CO, USA) and 2 ng/ml GDNF
(Peprotech) were added to the differentiation media. The miRNA mimics and
heparin inhibitors (Dharmacon, Lafayette, CO, USA) as well as the siRNAs (Silencer
Select validated and pre-designed siRNA, Ambion, Mulgrave, VIC, Australia) were
transfected into the cells using the Amaxa Nucleofector Kit for mNSC
(LONZA, Mount Waverley, VIC, Australia) according to the manufacturer’s manual.
The knockdown efficiency of the siRNAs was validated by qPCR. The siRNA
sequences are listed in Supplementary Table S9.

Chromatin immunoprecipitation. ChIP assays were carried out as
described by Sandoval et al.60 Cells were fixed with DSP (Thermo Scientific,
Waltham, MA, USA) for 45 min before fixing with 1% formaldehyde for 10 min.
Glycine (0.2 mM) was used to quench the reaction. After cell lysis, chromatin
extracts were sonicated (Bioruptor, Denville, NJ, USA) to fragments of ~ 200–500 bp
and pre-cleared by Dynabeads Protein A (Invitrogen). The pre-cleared chromatin
extract was incubated with C-terminal APP antibody (Invitrogen, cat no. 512700)
overnight at 4 °C, and then it was incubated with Dynabeads Protein A for 4 h at

hNSCs

NSC
miR-663

Neuron

pri-mir-663

APP AICD

AICD binding proteins

Target
genes

Figure 6 Proposed model of the APP-AICD-miR-663 signaling in hNSC differentiation. APP is located at the plasma membrane of hNSCs. Ligand binding to APP triggers an
intramembrane cleavage of APP to generate the AICD, which translocates to the nucleus. Nuclear AICD promotes the expression of miRNAs, such as miR-663, which suppress
the expression of genes such as FBXL18 and CDK6, to inhibit hNSC neuronal differentiation
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4 °C. The beads were then washed, and the chromatin–protein–antibody complexes
were eluted. After treatment with Proteinase K (Finnzymes, Waltham, MA, USA),
the eluted DNA was purified by the PCR purification kit (Qiagen, Chadstone, VIC,
Australia). qPCR was performed to determine the fold enrichment of immunopre-
cipitated DNA. qPCR reaction mixes were assembled using the SYBR Green
master mix (Roche, Indianapolis, IN, USA). The reactions were performed on the
LightCycler 480 System (Roche) using following cycling parameters: 95 °C for
10 min, and then 45 cycles of 95 °C (10 s), 60 °C (10 s) and 72 °C (10 s) followed by
a melting curve analysis. All reactions were performed with three technical
replicates. Fold change values were normalized against input DNA and compared
with the rabbit IgG control. The gapdh promoter region was selected as the negative
control. The primer sequences for qPCR are listed in the Supplementary Table S9.

Functional annotation clustering analysis. The validated target genes
of the 207 miRNAs were retrieved from the miRWalk (http://www.umm.uni-heidelberg.
de/apps/zmf/mirwalk/mirnatargetpub.html), and 1471 validated genes, which were
targeted by 93 of miRNAs, were found. The 93 control miRNAs, which were supposed
to be not influenced by AICD, were randomly selected from the 1522 miRNAs with
validated target genes, and these miRNAs were not included in the two ChIP-seq data
sets. The random selection was performed by the Excel (Microsoft, Redmond, WA,
USA). The validated target genes of control miRNAs were also retrieved from miRWalk.
The Functional annotation analysis was performed in the David Functional Annotation
Clustering Analysis website (http://david.abcc.ncifcrf.gov/home.jsp), using the default
setting of the medium classification stringency. The P-values (with Benjamini
correction) of GO terms were compared.

Lentivirus construction, production and transduction. The second-
generation, self-inactivating bicistronic lentiviral transfer vector, pWPI (kindly
provided by D. Trono), was used to produce lentivirus for transfection. The open
reading frames for human AICD59 were cloned upstream of an IRES-eGFP
cassette by blunt-end ligation to generate the vectors pWPI-AICD-IRES-eGFP. Viral
stocks were generated as previously described by Siatskas et al.61 When the cells
had grown to ~ 70% confluency, pWPI-AICD-IRES-eGFP lentiviral stock was added
to the cell culture medium with 4 μg/ml protamine sulfate. The cells were incubated
with lentivirus overnight before changing the medium.

Statistical analysis. Quantitative data are expressed as mean± S.E.M.
Statistical significance between any two groups was determined by the two-tailed
Student’s t-test or one-way ANOVA analysis using the GraphPad Prism5 (GraphPad
software, La Jolla, CA, USA). P-values less than 0.05 were considered significant.
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