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TLR4 mediates the impairment of ubiquitin-proteasome
and autophagy-lysosome pathways induced by
ethanol treatment in brain

A Pla1, M Pascual1,3, J Renau-Piqueras2 and C Guerri*,1,3

New evidence indicates the involvement of protein degradation dysfunctions in neurodegeneration, innate immunity response and
alcohol hepatotoxicity. We recently demonstrated that ethanol increases brain proinflammatory mediators and causes brain
damage by activating Toll-like receptor 4 (TLR4) signaling in glia. However, it is uncertain if the ubiquitin-proteasome and
autophagy-lysosome pathways are involved in ethanol-induced brain damage and whether the TLR4 response is implicated in
proteolytic processes. Using the cerebral cortex of WT and TLR4-knockout mice with and without chronic ethanol treatment, we
demonstrate that ethanol induces poly-ubiquitinated proteins accumulation and promotes immunoproteasome activation by
inducing the expression of b2i, b5i and PA28a, although it decreases the 20S constitutive proteasome subunits (a2, b5). Ethanol
also upregulates mTOR phosphorylation, leading to a downregulation of the autophagy-lysosome pathway (ATG12, ATG5,
cathepsin B, p62, LC3) and alters the volume of autophagic vacuoles. Notably, mice lacking TLR4 receptors are protected against
ethanol-induced alterations in protein degradation pathways. In summary, the present results provide the first evidence
demonstrating that chronic ethanol treatment causes proteolysis dysfunctions in the mouse cerebral cortex and that these events
are TLR4 dependent. These findings could provide insight into the mechanisms underlying ethanol-induced brain damage.
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Intracellular proteolysis has a crucial role in maintaining
cellular homeostasis and it affects various essential cellular
processes such as cell cycle regulation, transcriptional
control, signal transduction, antigen presentation and protein
turnover.1 Dysfunctions in the proteolytic process have been
found in a wide range of pathologies,2,3 including inflamma-
tory and neurodegenerative disorders.4,5 Indeed, many
neurodegenerative diseases are characterized by protein
misfolding and an abnormal accumulation and aggregation of
specific proteins, which can result for deficient clearance
systems, such as the ubiquitin-proteasome system (UPS) and
the autophagy-lysosome pathway (ALP). Examples of these
disorders are Alzheimer’s or Parkinson’s disease, which
present an accumulation of aberrant proteins that produce a
toxic neuronal effect, also called proteotoxicity.6

Digestion through the UPS is a selective process respon-
sible for the vast majority of protein degradation inmammalian
cells.7 Conjugation of proteins to ubiquitin is the hallmark of
their degradation by the 26S proteasome, which is composed
of a central 20S core containing catalytic subunits (b1, b2, b5),
as well as two 19S regulatory particles that enable the
recognition of proteins. Several proinflammatory cytokines, in
particular IFN-g and TNF-a,8 are able to induce the expression

of alternative catalytic subunits (b1i, b2i, b5i), and the union of
the 20S core to PA28 regulatory particles, which leads to the
formation of the so-called immunoproteasome.9 The function
of the immunoproteasome improves the major histocompat-
ibility complex (MHC) class I presentation during immune
responses, and also regulates proinflammatory cytokine
production, and T-cell differentiation and proliferation.10

Moreover, the immunoproteasome, and its subunit b5i
in particular, has been recently involved in autoimmune
disorders and other inflammatory diseases.11,12

The ALP comprises the process in which any cellular
component is delivered to the lysosome in order to be
degraded by hydrolases such as cathepsins. Autophagy is
finely regulated by a complex set of molecules known as ATG
(autophagy-related genes) that participate in the formation of
autophagic vacuoles or autophagosomes, which deliver the
cargo to the lysosome.13 This process is mediated by two
different conjugation events: the assembly of the ATG5-ATG12
complex and the formation of the LC3-phospatidyl ethanol-
amine complex.14 Autophagy is also regulated by two different
kinase complexes: a beclin-1 complex involved in membrane
nucleation; and themTOR complex, which is themain regulator
of this proteolytic pathway.15 Emerging evidence indicates that
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autophagy dysregulation participates in several neurodegen-
erative and inflammatory disorders.16 Treatment of these
pathologies with rapamycin, a mTOR inhibitor, reduces
inflammation and ameliorates the course of the disease.17

Alcohol is a neurotoxic compound and its abuse induces
brain damage and can lead to neurodegeneration.18 Although
the neuropathological processes underlying these effects
remain poorly understood, we have demonstrated that
ethanol, by activating the brain innate immune system and
TLR4 receptors in both cultures of glial cells and in brain,19,20

induces gliosis, production of cytokines and neuroinflamma-
tion, brain damage, myelin derangements and neuro-
degeneration.21,22 Elimination of TLR4 receptors abolishes
the neuroinflammation and brain damage induced by chronic
alcohol intake in mice.19–21 Besides the overactivation of
TLRs signaling, dysregulation of proteolytic processes also
contributes to the pathology of several neurodegenerative
disorders, such as Alzheimer’s disease, Parkinson’s disease
or amyotrophic lateral sclerosis.23–25 Notably, recent
evidence indicates the participation of protein degradation
processes in alcoholic liver pathology.26,27 However, it is
uncertain whether alterations in proteolytic processes are
involved in ethanol-induced brain damage and neuro-
degeneration. Therefore, the aim of this study is to evaluate
if chronic ethanol treatment impairs the UPS and ALP
processes in the brain and whether these proteolytic processes
are influenced by the innate immune TLR4 receptor.
Here we report that in vivo chronic ethanol treatment

alters both UPS and ALP, leading to an accumulation of

ubiquitinated proteins in the mice cerebral cortex. However,
alcohol upregulates the immunoproteasome by activating the
neuroimmune system. Consistently, we provide evidence that
the effects of ethanol on proteolytic processes are mediated
by innate immune receptor TLR4 signaling, as minimal
changes in protein degradation pathways were observed in
the cerebral cortex of ethanol-treated TLR4-knockout (KO)
mice. These findings provide new insights into the mechan-
isms underlying ethanol-induced brain damage.

Results

Role of TLR4 in the ethanol-induced accumulation of
ubiquitinated proteins. The UPS is the major degradation
system in the cell that is involved in the degradation of short-
lived, misfolded and defective proteins. Impairment of UPS
along with an accumulation of ubiquitinated proteins is the
major contributor to the pathogenesis of many neurodegen-
erative disorders.16,28 We therefore first explored if chronic
ethanol intake affects the ability to remove ubiquitinated
proteins and whether TLR4 signaling participates in these
effects. To answer this question, we performed western blot
analyses and we used an ubiquitin antibody capable of
detecting all ubiquitinated proteins. Figure 1a shows that
in vivo chronic ethanol treatment increased the ubiquitinated
proteins in the WT cerebral cortex, inducing a smear of
proteins of about approximately 45–76 kDa. Conversely, the
same ethanol treatment did not increase the amount of
ubiquitinated proteins in the cerebral cortex of TLR4-KO

Figure 1 Chronic ethanol intake increases poly-ubiquitinated proteins in the cortices of WT mice, but not in TLR4-KO mice. The immunoblot (a) and immunohistochemistry
(b) analyses and the quantification of the expression of poly-ubiquitinated proteins in the cortical extracts or brain cortical sections of the WT and TLR4-KO mice treated or not
with ethanol for 4 months. Data represent mean±S.E.M., n¼ 7 mice/group. *Po0.05 compared with the ethanol-treated WT or TLR4-KO mice with their respective
untreated control groups, according to an unpaired Student’s t-test. Blots were stripped and the total quantity of GAPDH was also assessed. A representative immunoblot of
each protein is shown. Scale bar: 50 mm
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mice, as no significant differences between ethanol-treated
and control TLR4-KO mice were noted. Likewise, an
immunohistochemical analysis of ubiquitinated proteins
(Figure 1b) further demonstrated that chronic ethanol
treatment promotes the accumulation of ubiquitinated pro-
teins in the cerebral cortex and that this event is associated
with the TLR4 function.

Chronic ethanol treatment impairs the ubiquitin-
proteasome pathway. The 20S proteasome constitutes
the proteolytic core of a large protein degradation complex
and allows the degradation of unneeded or misfolded
proteins by activating several proteolytic activities capable
of removing ubiquitinated proteins. The 20S proteasome
contains several catalytic subunits (b1, b2, b5) and is
associated with two 19S regulatory particles that enable
protein recognition. Therefore, to search the potential role of
ethanol in the UPS pathway, we first measured the levels of
the 20S proteasome constitutive subunits. As shown in
Figure 2a, chronic in vivo treatment with ethanol decreased
the b5 and a2 subunits expression in the cerebral cortices of
WT mice, whereas no changes were noted in the b1 and b2
subunits. However, ethanol treatment did not affect the
expression levels of any of the proteasome constitutive
subunits in the cerebral cortices of TLR4-KO mice.
Inmany neurodegenerative diseases, the functional decline

of the constitutive proteasome is associated with an induction
of the catalytic subunits (b1i, b2i and b5i) of the immuno-
proteasome, and also with the union of the 20S core to PA28
regulatory particles9,29 by the upregulation of proinflammatory
cytokines IFN-g and TNF-a.8 We therefore determined
whether alcohol treatment could induce the immunoprotea-
some subunits in the cortices of WTmice. Figure 2 shows that
the protein expression of b5i and b2i (Figure 2b), and the b5i
mRNA levels (Figure 2c) significantly increased in the cortices
of ethanol-treatedWTmice. Similarly, the levels of the PSME1
(or PA28a) subunit, a proteasome activator implicated in
immunoproteasome assembly and antigen processing,30 also
increased in ethanol-treated WT animals. Notably, as in most
neurodegenerative pathologies, ethanol treatment signifi-
cantly enhanced the TNF-a21 and IFN-g levels in the cerebral
cortices of WT mice (Figure 2d). Conversely, no significant
changes in the immunoproteasome subunits and IFN-g levels
were noted in the cortices of ethanol-treated TLR4-KO when
compared with untreated TLR4-KO (Figures 2b–d).
To establish whether the upregulation of some immuno-

proteasome subunits in the cortices of ethanol-treated
animals was associated with changes in proteasome activity,
we measured the three proteolytic chymotrypsin-like, trypsin-
like and caspase-like activities. Figure 2e shows that the
chymotrypsin-like and trypsin-like activities were enhanced in
the cerebral cortices of ethanol-treated WT mice, whereas no
changes were observed in ethanol-treated TLR4-KO mice.
In summary, the above results suggest that ethanol

treatment reduces the 20S constitutive proteasome expres-
sion in the cerebral cortex and promotes the accumulation of
poly-ubiquitinated proteins, while it also stimulates the
production of proinflammatory cytokines, probably through
TLR4 signaling, which, in turn, induce the activation of the
immunoproteasome.

The ALP is also impaired by ethanol treatment: role of
innate immune receptors TLR4 activation. We next
evaluated the potential effects of in vivo chronic ethanol
treatment on the ALP pathway. For this aim, we first
assessed the proteins involved in the formation of auto-
phagosomes, such as LC3, ATG5 and ATG12, as well as the
major lysosomal enzyme required for the degradation of
contents in the autophagosome, cathepsin B, in the cerebral
cortex. Figures 3a and b show that ethanol treatment
decreased the mRNA and protein levels of cathepsin B,
LC3 and ATG5, and only the protein levels of ATG12 in WT
mice. No significant changes were observed between the
TLR4-KO mice treated with or without ethanol.
We next evaluated whether the expression of p62, a protein

that can bind to LC3 and ubiquitinated proteins,31 has a role in
the selective autophagy of ubiquitinated protein aggregates
and organelles. Figures 3a and b depict a downregulated p62
in the cortices of ethanol-treated WT mice, but no significant
changes were noted in TLR4-KO mice (Figures 3a and b),
suggesting that TLR4 signaling is involved in the ethanol-
induced impairment of p62 and the subsequent autophagic
process. Immunofluorescence studies further established that
LC3 and p62 interact, and that this interaction diminished in
ethanol-treated WT mice (Figure 3c).
To further confirm that ethanol treatment affects the ALP,

electron microscopy was employed to evaluate the number
and size of autophagic vacuoles. These studies revealed that
ethanol treatment increased the volume density of the
autophagic vacuoles in the cytoplasm of WT mice, whereas
minor changes were observed in TLR4-KO mice (Figure 4).
These results suggest that ethanol either impairs the
clearance of autophagosomes or affects authophagic cata-
bolism. Deficient maturation or impaired clearance of auto-
phagosomes might affect the degradation of their cargo,
which could lead to cell damage and neurodegeneration.32

Finally, in order to evaluate the mechanism by which
ethanol induces impairment of autophagy, we measured the
mTOR phosphorylation levels. The kinase mTOR is a critical
regulator of the autophagic process, as mTOR activation
inhibits this pathway.33 As depicted in Figure 3d, ethanol
upregulated the phosphorylation of mTOR in WT mice,
whereas similar phosphorylation levels were found between
control and ethanol TLR4-KO mice. We also demonstrated
that ethanol consumption does not alter the levels of beclin-1
in WT and TLR4-KO mice (data not shown), suggesting that
ethanol-induced inhibition of autophagy could be mediated by
the mTOR pathway.
In summary, the above results provide evidence that

ethanol treatment reduces the autophagic process by impair-
ing autophagosomes clearance and/or the degradation of
their cargo proteins and organelles, events that might promote
neurodegeneration. The obtained results also suggest that
innate immune activation participates in the ethanol-induced
reduction of the autophagic process.

Effect of an in vivo administration of bortezomib and
rapamycin on ethanol-treated mice. Finally, in order to
evaluate the in vivo relevance of protein degradation
impairment in ethanol-induced neuroinflammation and brain
damage, an UPS modulator, bortezomib, which inhibits 26S
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Figure 2 Chronic ethanol treatment alters the UPS in the cerebral cortices of WT mice, but causes no changes in the cortices of TLR4-KO mice. (a) The immunoblot
analysis and quantification of the b5, b2, b1 and a2 subunits expressions in the brain extracts of the WT and TLR4-KO mice treated or not with ethanol for 4 months. (b) The
immunoblot analysis and quantification of the b5i, b2i, b1i, PSME1 and PSME2 subunit expressions in the brain extracts of the WT and TLR4-KO mice treated or not with
ethanol for 4 months. (c) The mRNA levels of the b5i, b2i and b1i subunits of the WT and TLR4-KO mice treated or not with ethanol for 4 months. (d) The IFN-g levels of the
WT and TLR4-KO mice treated or not with ethanol for 4 months. (e) Levels of the three proteolytic activities, chymotrypsin-like, trypsin-like and caspase-like in the WT and
TLR4-KO mice treated or not with ethanol for 4 months. Data represent mean±S.E.M., n¼ 7 mice/group. *Po0.05, **Po0.01 compared with the ethanol-treated WT or
TLR4-KO mice with their respective untreated control groups, according to an unpaired Student’s t-test. Blots were stripped, and the total quantity of GAPDH was also
assessed. A representative immunoblot of each protein is shown
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proteasome catalytic activity,34 was administered to the
animals. The effects of ethanol on the ALP pathway were
also assessed by administering rapamycin to the animals, a
compound which inhibits mTOR signaling (e.g., AMPK and
p53 signaling)35 and induces autophagy.36 Both inhibitors were
injected to the control and chronic ethanol-treated WT mice.

The results in Figure 5a demonstrate that bortezomib
administration markedly reduces the ethanol-induced
activation of the proteasome activities, chymotrypsin- and
trypsin-like, in the cerebral cortex of WT mice. Similarly,
administration of rapamycin significantly inhibits the induction
of mTOR phosphorylation produced by chronic ethanol intake

Figure 3 The ALP is impaired in the cortices of ethanol-treated WT mice. (a) The immunoblot analysis and quantification of the expressions of ATG5, ATG12, LC3,
cathepsin B and p62 in the cortical extracts of the WT and TLR4-KO mice treated or not with ethanol for 4 months. (b) The mRNA levels of ATG5, ATG12, LC3, cathepsin B
and p62 of the WT and TLR4-KO mice treated or not with ethanol for 4 months. (c) The double-labeling immunofluorescence of LC3 and p62 in the brain cortices of the WT and
TLR4-KO mice treated with or without ethanol for 4 months. The scale bar of the insets is 6.25mm, the scale bar of the low magnification images is 25 mm. (d) The immunoblot
analysis and quantification of the expression of p-mTOR in the brain extracts of the WT and TLR4-KO mice treated or not with ethanol for 4 months. Data represent
mean±S.E.M., n¼ 7–12 mice/group. *Po0.05, **Po0.01, ***Po0.001 as compared with the ethanol-treated WT or TLR4-KO mice with their respective untreated control
groups, according to an unpaired Student’s t-test. Blots were stripped, and the total quantities of GAPDH and mTOR were also assessed. A representative immunoblot of each
protein is shown
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in the cerebral cortex of WT mice (Figure 5b). These results
indicate that under our experimental conditions, bortezomib
and rapamycin are able to inhibit ethanol-induced alterations
in the UPS and ALP pathways.
We next determined whether ethanol-induced neuroinflam-

mation was associated with the protein degradation
impairment observed in the cerebral cortex of chronic
ethanol-treated mice. Figure 5c illustrates that whereas
bortezomib completely suppresses the upregulation in the
levels of TNF-a, IL-1b and NO in cortex of ethanol-treated WT
mice, rapamycin only restores the IL-1b expression in the
cortices of these animals. The analysis of the inflammatory
mediators, iNOSandCOX-2, showed that whereas bortezomib
abolishes the upregulation of the iNOSandCOX-2 expressions
in the cortex of ethanol-treated WT mice, rapamycin only
restores the levels of iNOS in the ethanol-treated animals
(Figure 5d). There were no significant changes in the

expression of proinflammatory cytokines and mediators when
either inhibitor was administered alone.

Discussion

Emerging evidence indicates the participation of UPS and
ALP in both the innate immune response and the pathology of
inflammatory and neurodegenerative disorders.37,38 We
demonstrated that ethanol, by activating the innate immune
receptors TLR4 in glial cells, increases the production of
cytokines and inflammatory mediators, causing neuroinflam-
mation and brain damage.19–21 However, whether ethanol-
induced neuroimmune activation can impair the neural
proteolytic processes, which contribute to brain damage is
presently unknown. Here we show for the first time that
chronic ethanol intake impairs both the UPS and ALP
pathways by causing an accumulation of ubiquitinated
proteins in the brain, events that might participate in
ethanol-induced brain damage and neurodegeneration. We
also provide evidence that the elimination of TLR4 abolishes
the ethanol-induced dysregulation of UPS and ALP, as well as
the accumulation of ubiquitinated proteins, suggesting that
TLR4 receptors have a key role in these pathological
processes.
The intracellular accumulation and aggregation of proteins

are a common feature across many neurodegenerative
diseases, including Alzheimer’s disease, Huntington’s
disease, spinocerebellar ataxia, Parkinson’s disease, amyo-
trophic lateral sclerosis and prion disease.25 Many of these
neurodegenerative disorders are caused by mutations, which
result in the production of misfolded proteins that are specific
for each disease. Therefore, the ubiquitin-dependent degra-
dation of misfolded proteins by proteasomes constitutes a
critical part of the cytoprotective quality control machinery, as
defects in this system can lead to the accumulation of aberrant
proteins. However, in later disease stages, mutant proteins
tend to form aggregates as their continuous production might
exceed the capacity of an UPS, which might already be
dysfunctional in several pathologies. We hereby show that
chronic ethanol consumption is able to lead to an accumula-
tion of ubiquitinated proteins in WT mice, effects that may be
associated with the impairment of UPS and/or immunoprotea-
some functioning. Consistently with our results, the micro-
array studies of the frontal cortex of alcoholics revealed a
downregulation in the expression of the genes related with the
UPS along with changes in the gene expression associated
with lysosomes, apoptosis, myelination and the immune/
stress response.39,40

The constitutive 20S proteasome is replaced with the
immunoproteasome in the presence of an inflammatory
environment, principally through the expression of cytokines
IFN-g and TNF-a.8 Activation of the immunoproteasome
occurs in different neurodegenerative diseases associated
with neuroinflammation,41,42 and also in brain injury.43

Nevertheless, although the immunoproteasome can have a
protective role in acute neuroinflammation,44 its over-
activation has deleterious effects on these neurodegenerative
diseases. We demonstrated that ethanol consumption
induces neuroinflammation by increasing the levels of several
cytokines (IL-1b, TNF-a, IL-6) and other inflammatory

Figure 4 The electron microscopy analysis shows that chronic ethanol
consumption increases the volume density of autophagic vacuoles in WT mice.
The representative transmission electron micrographs of the cerebral cortices
obtained from the ultrathin tissue sections of the WT and TLR4-KO mice treated or
not with ethanol for 4 months is shown. Bars represent the volume density (Vv) of
autophagic vacuoles (mm3/100 mm3 per cell). Scale bars represent 1 mm. Arrows
indicate autophagic vacuoles. Data represent mean±S.E.M., n¼ 3–4 mice/group.
*Po0.05 as compared with the ethanol-treated WT or TLR4-KO mice with their
respective untreated control groups, according to an unpaired Student’s t-test
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mediators, leading to brain damage.21 The present findings
further reveal that ethanol treatment upregulates IFN-g, an
event that can mediate the induction of the b2i and b5i
immunoproteasome subunits and the regulatory particle
PA28a subunit; nevertheless, it reduces some constitutive
subunits (e.g., b5 and a2) of the 20 proteasome. This
composition shift toward the immunoproteasome correlates
with an increase in the chymotrypsin- and trypsin-like
proteasomal activities, as demonstrated in the present study
and which coincides with others.45,46 Yet despite the increase
in proteasome activities, ethanol was also seen to cause a
massive buildup of ubiquitinated aggregates. This accumula-
tion of aggregates might be attributable to either an excess of
ubiquitinated proteins, which overwhelm the degradation
capacity of the proteasome, or the inability of ubiquitinated
proteins to enter the proteasome cavity.47 Likewise, the
immunoproteasome is specialized in cleaving small peptides
for antigen presentation, but the change in its activity does not
affect the rate of ubiquitinated proteins’ complete breakdown.45

Notably, activation of b5i chymotrypsin-like activity has been
recently reported to be involved in the generation and
sustainment of an inflammatory environment,11,12,48 whereas
the use of inhibitors of this activity, such as bortezomib, has
been described in many cancer therapies,49,50 neurodegen-
erative disorders51 and other chronic inflammatory condi-
tions.52 We also observed that bortezomib completely
restores the levels of the cytokines and inflammatory
mediators induced by ethanol in WT brain cortices, thus
corroborating the role of ethanol in UPS impairment.
Our previous studies revealed the involvement of TLR4

activation in the ethanol-induced release of cytokines and
inflammatory mediators, and also in brain damage.19–21 The
present findings also support the role of the TLR4 response
and innate immune activation in ethanol-induced dysfunctions
of proteolytic pathways in the brain. Similarly, activation of the
TLR4 response promotes the upregulation of immunoprotea-
some subunits and proteasome activity in LPS-stimulated
microglial cells.42 Therefore, elimination of TLR4might reduce

Figure 5 Effect of the in vivo administration of bortezomib and rapamycin to ethanol-treated WT mice. (a) Levels of the three proteolytic activities, chymotrypsin-like,
trypsin-like and caspase-like, in the brain cortical extracts of these groups: control; ethanol exposure (4 months); bortezomib (1 mg/kg); ethanol exposure (4 months) plus
bortezomib (1 mg/kg). (b) The immunoblot analysis and quantification of the expression of p-mTOR in the brain cortical extracts of these groups: control; ethanol exposure
(4 months); rapamycin (3 mg/kg); ethanol exposure (4 months) plus rapamycin (3 mg/kg). The levels of TNF-a, IL-1b and NO (c) and the immunoblot analysis and
quantification of COX-2 and iNOS (d) were measured in the extracts of the brain cortices of these groups: control; ethanol exposure (4 months); rapamycin (3 mg/kg);
bortezomib (1 mg/kg); ethanol exposure (4 months) plus rapamycin (3 mg/kg); ethanol exposure (4 months) plus bortezomib (1 mg/kg). Rapamycin or bortezomib was
administered once weekly intraperitoneally or intravenously, respectively. Data represent mean±S.E.M., n¼ 4–6 mice/group. *Po0.05, **Po0.01 as compared with the
control group, #Po0.05 as compared with the ethanol group, according to the one-way ANOVA followed by the Bonferroni’s post hoc test. Blots were stripped, and the total
quantity of GAPDH was also assessed. A representative immunoblot of each protein is shown
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the ethanol-induced inflammatory environment, which, in turn,
can reduce or abolish the immunoproteasome activation.
According to this hypothesis, here we demonstrate for the first
time that ethanol does not produce proteasome or immuno-
proteasome alterations when the TLR4 response is lacking in
TLR4-KO mice. Lack of the effects of ethanol in TLR4-KO
mice might be associated with the absence of a brain
inflammatory cellular environment. Indeed, TLR4 deficiency
prevents the accumulation of ubiquitinated proteins induced
by alcohol abuse in the brain cortex.
Besides the UPS, the other major route for intracellular

protein degradation is the ALP. They both work together
during the clearance of ubiquitinated protein aggregates53,54

through, for example, protein p62, which links these structures
to the autophagicmachinery by a direct interaction with LC3.31

We herein demonstrate that ethanol treatment downregulates
p62, as well as its colocalization with LC3, and other
autophagic proteins, which suggests that the accumulation
of ubiquitinated proteins may also be correlated with an
impairment of the autophagy machinery. Our electron micro-
scopy results further support that ethanol impairs the
autophagic process, as it induces the formation of autophagic
vacuoles with greater volume density. Based on these data,
we postulate that the accumulation of autophagic vacuoles
can aggravate the neurophathological process given the
difficulty of the clearing process of defective vacuoles and
the generation of new ones. Hence, ethanol can impair the
autophagic flux and causes effects in autophagic catabolism,
and these events may contribute to neurodegeneration.32

One important target of the autophagy pathway is mTOR,
one of the main kinase complexes that negatively regulates
the autophagy pathway.55 The pharmacological modulation of
mTOR with inhibitors, such as rapamycin, has been reported
to promote the autophagic degradation of aggregation-prone
proteins in vitro and to diminish the severity of neurodegen-
eration in several in vivo models.56 We also observed that
rapamycin administration partially reduces neuroinflammation
in ethanol-treated WT mice. Moreover, as mTOR is activated
by the TLR4/PI3K-I/Akt or TLR4/MAPK/Erk1/2 cascade,57,58

the upstream signals of both cascades (e.g., TLR4 activation)
may modulate the autophagy. In line with this, we observed
that ethanol-treated TLR4-KO mice show no changes in
mTOR phosphorylation, and hence no affection of the
autophagy pathway.
Taken together, we conclude for the first time that these

results support the role of TLR4 in ethanol-induced protea-
some and autophagy impairment in the cerebral cortex, which
leads to the accumulation and aggregation of proteins.
Furthermore, blocking this receptor can ameliorate neuro-
inflammation, and possibly neurodegeneration, induced by
ethanol through the modulation of UPS and ALP. Our results
are consistent with the changes noted in the expression of
those genes involved in ubiquitination and proteolysis in
cortices of alcohol abusers, and provide novel mechanisms to
help understand brain damage caused by alcohol abuse.

Materials and Methods
Animals and treatments. Male C57BL/6 WT (Harlan Ibérica, Barcelona,
Spain) and TLR4-knockout (KO) mice (C57BL/6 background, kindly provided
by Dr. S Akira, Osaka University, Suita, Japan) aged 6–7 weeks were used.

All the animals were kept under controlled light and dark (12/12 h), temperature
(23 1C) and humidity (60%) conditions. All the experimental procedures were
carried out in accordance with the guidelines approved by the European
Communities Council Directive (86/609/ECC) and by Spanish Royal Decree
1201/2005. The animal experiments were also approved by the Ethical Committee
of Animal Experimentation of the Prı́ncipe Felipe Research Center (Valencia, Spain).

For the chronic ethanol treatment, male 7-week-old C57BL/6 (WT, TLR4þ /þ )
and TLR4 knockout (KO, TLR4� /� ) mice weighing 18–20 g were housed
(4 animals/cage) and maintained with water (WT and KO control) or water containing
10% (v/v) ethanol, and solid diet ad libitum for 4 months. During this period,
daily food and liquid intake was similar for WT and KO mice, and also for the
ethanol-treated and untreated groups.21 Thus, mice consumed about 12.6±2.0 g
ethanol/kg of body weight. The blood ethanol levels reached in ethanol-treated WT
and KO mice were 122±18 mg/dl. Body weight gain at the end of the 4 months
period was similar in male WT (C57BL/6) and in TLR4-KO mice treated with or
without ethanol.21

For the in vivo UPS and ALP modulation, we used bortezomib and rapamycin,
respectively. We used control and ethanol-treated WT mice for 4 months, and the
treatment with both inhibitors was carried out over the last 8 weeks of this period.
Bortezomib (1 mg/kg; LC Laboratories, Woburn, MA, USA), dissolved in DMSO and
physiological saline, was administered intravenously once weekly in anesthetized
mice with 2–4% isoflurane inhalation. Rapamycin (3 mg/kg; LC Laboratories),
dissolved in DMSO and physiological saline, was administered intraperitoneally
once weekly.

Mice were killed by cervical dislocation; brains were removed, dissected and
brain cortices were immediately snap-frozen in liquid nitrogen until their analysis.
Some animals were anesthetized, perfused with paraformaldehyde (PF) and used
for the immunohistochemistry analyses.

Western blot analysis. Brain tissue from the cerebral cortex was
homogenized in lysis buffer (1% Nonidet P-40, 20 mM Tris-HCl, pH 8, 4 mM
sodium chloride, 40 mM sodium fluoride and protease inhibitors) for 30 min on ice.
An equal amount of cell lysate of each sample (40 mg of protein/lane) was loaded
onto SDS-polyacrylamide gels, and was then blotted onto polyvinylidene fluoride
membranes. Membranes were blocked with 5% non-fat dried milk in TBS
containing 0.1% Tween-20, and were then incubated overnight with the following
primary antibodies: anti-Ubiquitin, anti-Proteasome 20S a2, anti-Proteasome 20S
LMP7 or b5i, anti Proteasome 20S LMP2 or b1i, anti-PSME1, anti-PSME2,
anti-APG5L/ATG5, anti-LC3A/B and anti-SQSTM1/p62 (Abcam, Cambridge,
UK); anti-ATG12, anti-Cathepsin B, anti-20S Proteasome b5, anti-20S Protea-
some b2, anti-20S Proteasome b1, anti-MECL-1 or b2i, anti-p-mTOR and anti-
mTOR (Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-iNOS (BD
Transduction Laboratories, San Jose, CA, USA) and anti-COX-2 (Cayman
Chemical, Ann Arbor, MI, USA). After washing with TBS containing 0.1% Tween-
20, blots were incubated with HRP-conjugated antibodies. Blots were developed
using the ECL system (ECL Plus; Thermo Scientific, Rockford, IL, USA). All the
membranes were stripped for 30 min in SDS solution (0.4% SDS and 200 mM
glycine, pH 2.5), and were washed and incubated with anti-GAPDH mAb
(Chemicon, Temecula, CA, USA) for 2 h as a loading control. The intensity of the
bands was quantified with the image analysis software ImageJ 1.44p (National
Institutes of Health, Bethesda, MD, USA), and the densitometry analysis is shown
in arbitrary units normalized to the GAPDH loading control.

RNA isolation and quantitative RT-PCR. Total RNA from brain cortices
was isolated using the Tri Reagent Method (Sigma-Aldrich, St. Louis, MO, USA),
as described in the manufacturer’s protocol. Reverse transcription of 1 mg of total
RNA was performed using the Transcriptor First Strand cDNA synthesis kit (Roche
Diagnostics, Basel, Switzerland). Amplification of the target and housekeeping
(b-glucuronidase) genes was performed using the Taqman Gene Expression
Master Mix (Applied Biosystems, Foster City, CA, USA) in a LightCycler 480
System (Roche Diagnostics) following the manufacturer’s instructions. The assay
codes of the primers are shown in Table 1. Data were analyzed using the
LightCycler 480 relative quantification software, and were normalized to the
amplification product of b-glucuronidase.

Proteasomal activity assay. Cerebral cortices were placed on ice and
homogenized in extraction buffer (20 mM Tris-HCl, pH 7.8, 1 mM dithiothreitol,
1 mM ATP, 10% glycerol, 0.5 mM EDTA, 0.5% Igepal and 5 mM MgCl2). Lysates
were centrifuged at 14 000� g at 4 1C for 15 min. The three activities of the
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20S proteasomes (chymotrypsin-like, trypsin-like and peptidylglutamyl-peptide
hydrolase or caspase-like activities) were analyzed using fluorogenic substrates:
Suc-LLVY-MCA, Boc-LSTR-MCA and Z-LLE-b-naphthylamide (Sigma-Aldrich),
respectively. The brain lysates (50 mg of protein) and the fluorogenic substrate
(final concentration, 50–100mM) were incubated together in a buffer containing
20 mM Tris-HCl, pH 7.8, 5 mM MgCl2, 1 mM DTT and 1 mM ATP. All the assays
were done in triplicate. Incubation took place at 37 1C for 60 min in a 96-well plate.
Fluorescence was determined at 355 nm excitation/460 nm emission in a
microplate spectrofluorometer (Perkin-Elmer, Waltham, MA, USA). Proteasomal
activity was expressed in arbitrary units.

Cytokine analysis. The levels of TNF-a, IL-1b, NO and IFN-g were
determined in cerebral cortex lysates. The TNF-a, IL-1b and IFN-g levels
were measured using an ELISA kit (eBioscience, Vienna, Austria) following the
manufacturer’s protocols, and NO production was assessed by measuring the
nitrite levels by the Griess reaction as described previously.59

Brain tissue preparation and immunohistochemistry. Mice were
anesthetized by an intraperitoneal injection of sodium penthobarbital (60 mg/kg)
and fentanyl (0.05 mg/kg) for analgesia. Animals were then perfused transcardially
with 0.9% cold saline containing heparin, followed immediately by 4% PF in 0.1 m
phosphate buffer, pH 7.4, for tissue fixation. PF-fixed brains were removed,
postfixed overnight at 4 1C with the same fixative solution (4% PF) and stored at
4 1C in PBS containing 30% sucrose for cryoprotection. Coronal brain sections
(40mm) were obtained with a cryostat (Microm HM 505E) and collected on
polysine glass slides (Menzel-Gläser, Thermo Scientific). Brain sections were
treated with citrate buffer, pH 6.0, for 15 min for epitope retrieval and were
incubated with a peroxide quenching solution and 3% methanol-hydroperoxide for
10 min, followed by a blocking solution (5% serum in 0.1% PBS/Tween 20) for 1 h.
Then, they were incubated overnight at 4 1C with mouse monoclonal anti-Ubiquitin
(1 : 1000; Abcam). Sections were then incubated for 1 h with the secondary
biotinylated antibody (1 : 200; Vector Laboratories, Burlingame, CA, USA). The
avidin-biotin-peroxidase method (ABC kit; Vector Laboratories) was performed
using 3,30-diaminobenzidine (0.7 mg/ml) as a substrate (SIGMA FAST 3,30-
Diaminobenzidine; Sigma-Aldrich) according to manufacturer’s protocol. Sections
were mounted onto glass slides with distyrene-plasticizer-xylene-mounting
medium (Sigma-Aldrich). Immunostainings were visualized and digitally recorded
with a camera (DFC-480; Leica Microsystems, Wetzlar, Germany) mounted onto a
microscope (DM-6000B; Leica Microsystems). The quantitative image analysis of
the immunoreactivity of ubiquitin in the cerebral cortex was assessed with the
MetaMorph software analysis (version 7.0; Molecular Devices, Sunnyvale, CA,
USA). Approximately 18–20 fields of the cerebral cortex from five to eight coronal
brain sections of at least three animals per group were analyzed.

For double immunofluorescence labeling, coronal brain sections were treated
with citrate buffer, pH 6.0, for 15 min for epitope retrieval and were then incubated
for 30 min with 0.3% sudan black solution to quench autofluorescence. After
blocking with 5% normal serum for 1 h, sections were subsequently incubated
overnight at 4 1C with anti-LC3A/B (1 : 50) and anti-SQSTM1/p62 (1 : 250; Abcam).
Brain sections were then incubated with the respective secondary Alexa Fluor-
conjugated antibodies (1 : 500; Invitrogen, Carlsbad, CA, USA). Hoechst 33342 dye
(0.5 mg/ml, Molecular Probes, Eugene, OR, USA) was used as a nuclei marker.
Negative controls were performed by replacing the respective primary antibodies
with isotype-matched irrelevant IgG. Sections were mounted onto glass slides with
fluorescent mounting medium (Merck KGaA, Darmstadt, Germany). Images were

acquired using a TCS-SP2-AOBA confocal laser-scanning microscope (Leica
Microsystems) and a � 63 HCX PL APO lbd.BL63xN.A.1.4 oil objective. All the
confocal images were acquired with the same settings. The fluorescence
distribution was analyzed with the MetaMorph software analysis (version 7.0),
and the results were expressed as the % of p62 colocalizing with LC3. The
quantitative analysis was performed in 18–20 fields of the cerebral cortex from five
to eight coronal brain sections of at least three animals per group.

Electron microscopy. Mice were perfused via the left ventricle under deep
anesthesia with 1% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M
cacodylate buffer (pH 7.4). Small blocks of the cerebral cortex were processed
for electron microscopy and were embedded in Epon resin, as previously
described in detail.60 The ultrathin tissue sections obtained were contrasted with
uranyl acetate and lead citrate and were examined under a Philips CM100
transmission electron microscope (Philips, Amsterdam, Netherlands). From each
sample 20–25 micrographs were randomly taken (primary magnification,
� 10 000). Next the volume of autophagic vesicles was estimated by
morphometry with the Visilog program (Noesis Vision, Inc., Mérignac, France).
The results are expressed as the volume density (Vv) of autophagic vacuoles
(mm3/100 mm3 per cell).

Conflict of Interest
The authors declare no conflict of interest.
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