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Defining the role of the Bcl-2 family proteins in
Huntington’s disease

J Sassone*,1, A Maraschi1,3, F Sassone1,3, V Silani1,2 and A Ciammola*,1

B-cell lymphoma 2 (Bcl-2) family proteins regulate survival, mitochondria morphology dynamics and metabolism in many cell
types including neurons. Huntington’s disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat tract in
the IT15 gene that encodes for the protein huntingtin (htt). In vitro and in vivo models of HD and HD patients’ tissues show
abnormal mitochondrial function and increased cell death rates associated with alterations in Bcl-2 family protein expression
and localization. This review aims to draw together the information related to Bcl-2 family protein alterations in HD to decipher
their potential role in mutated htt-related cell death and mitochondrial dysfunction.
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Facts

� The B-cell lymphoma 2 (Bcl-2) family proteins regulate
the outer mitochondrial membrane (OMM) permeability
thus controlling the mitochondrial potential, mitochondrial
morphology dynamics and the balance between survival
and death in many cell types including neurons.

� HD is a neurodegenerative disease characterized by
progressive neuronal dysfunction and death. In patients
with HD and in in vitro and in vivo HD models, mutated
htt expression leads to OMM permeabilization, loss of
mitochondrial potential and mitochondrial fragmentation.

� HD cell culture models and HD mouse brain models
show alterations in Bcl-2 family protein expression and
localization. Autopsy studies in patients’ brain have
detected Bcl-2 family protein alterations in HD.

Open Questions

� We still need more precise evidence on the role of Bcl-2
family proteins in HD-related cell death.

� We do not know the role of Bcl-2 family proteins in
HD-related mitochondrial dysfunction.

� Nor do we know through which molecular pathway Bcl-2
family proteins can cause mitochondrial dysfunctions and
cell death in HD.

Introduction

Proteins belonging to the Bcl-2 family are key regulators of
the apoptotic mitochondrial pathway. Growing evidence
shows that Bcl-2 family proteins also modulate mitochondrial
morphology1–3 and cellular metabolism4 independently from
cell death mechanisms. Given that HD typically leads to
progressive neuronal death causing neuronal cells to
display several mitochondrial dysfunctions (including
decreased mitochondrial potential (Dc), abnormal calcium
handling, decreased ATP synthesis capacity and increased
mitochondrial fragmentation), research has for long investi-
gated Bcl-2 family proteins in HD models and tissues from
patients with HD. These studies highlighted evidence that
mutated htt dysregulates Bcl-2 family protein levels and
localization. Considering the complex Bcl-2 network, a
literature review could help to elucidate these proteins’ role
in mutated htt-related mitochondrial dysfunction and cell
death.

What Evidence Exists for Dysregulated Bcl-2 Family
Proteins in HD?

Research has to date identified over 20 Bcl-2 family members
classified, according to their function, in three Bcl-2 family
subgroups: the pro-survival proteins, the pro-apoptotic
BH3-only proteins and the pore-forming proteins. Here, we
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review the three subgroups, focusing on the Bcl-2 family
members relevant for HD and gathering data on the cell
culture model SThdH,5 cell culture models obtained by
transient htt transfection, in genetic mouse models R6/1,
R6/2,6 Tet/HD94,7 N171-82Q,8 YAC1289 and human cells
from patients with HD.

The Pro-survival Bcl-2 Proteins: Bcl-2 and Bcl-xL

Bcl-2 and B-cell lymphoma-extra large (Bcl-xL) function to
repress programmed cell death.10,11 They are stably
inserted in intracellular membranes (OMM and the
endoplasmic reticulum (ER) membrane) and inhibit cell
death by sequestering the pro-apoptotic Bcl-2 family proteins
into inactive complexes.12 In the normal central nervous
system (CNS), Bcl-2 is widespread expressed during the
embryonic stage, whereas after birth it progressively
declines with aging. Studies in adult monkey and adult
human CNS disclosed, apart from rare Bcl-2 positive
neurons, that most neurons and astrocytes express no
Bcl-2 and that most Bcl-2 protein in adult brain results from
microglial expression.13 Bcl-xL is encoded by the Bcl-x gene
and, differently from Bcl-2, retains its expression in adult
neurons at a relatively high level, predominantly in Purkinje
cells in the cerebellum, in cerebral cortical neurons and in
hippocampal neurons.14,15

Bcl-2 level alterations in HD remain controversial. Bcl-2
levels were first investigated in HD cell culture models:
mutated htt expression significantly decreased Bcl-2
protein levels in the neuroblastoma cell line Neuro2A16 and
significantly decreased Bcl-2 transcript and Bcl-2 protein
levels in immortalized striatal cells.17,18 Although these results
strongly suggest that mutated htt expression decreases Bcl-2
levels, they provide no definitive proof given that the proto-
oncogene Bcl-2 is highly dysregulated in many tumor cell
lines including those of neural origin.19,20 Hence, data from
immortalized cell cultures might not correspond to Bcl-2 levels
in post-mitotic neurons.

Others have investigated Bcl-2 levels also in brains from HD
mouse models. A first study detected no Bcl-2 protein level
changes in the total brain or in mitochondrial fractions from
R6/2 mice as compared with littermate controls.21 Accord-
ingly, two independent studies reported no differences in Bcl-2
mRNA and protein levels between R6/1 and control mice.22,23

Conversely, more recent studies disclosed decreased
Bcl-2 mRNA and protein levels in R6/2 mouse brains17,24

and N171-82Q mice.25

After reappraising these seemingly contradictory findings,
we find it difficult to provide a definitive answer about whether
Bcl-2 levels are dysregulated in HD mouse models. To
understand the potential protective role of Bcl-2 in HD, Zhang
et al.21 crossed R6/2 mice with transgenic mice selectively
overexpressing Bcl-2 in neurons: double transgenic R6/2-Bcl-
2 mice survived longer than R6/2 littermates and their motor
deficits had a significantly later onset. Notwithstanding
contradictory data about Bcl-2 expression in HD mouse
models, this result suggests that Bcl-2 overexpression can
protect neurons from toxicity elicited by mutated htt.

Bcl-2 expression was analyzed by immunostaining in
post-mortem controls and the HD patients’ caudate nucleus.

Control neurons had low or negative Bcl-2 signals, in
agreement with a previous report,13 whereas Bcl-2 labeling
was stronger in HD neurons, and Bcl-2 expression reached
maximum in the brains of HD patients with longer disease
duration.26 In accordance with a potential neuroprotective role
of Bcl-2 in HD, the investigators suggested that HD patients’
neurons may increase Bcl-2 expression in an attempt to
survive. An alternative hypothesis is that Bcl-2 protein in HD
brains is cleaved by caspase proteases activated by
mutated htt expression.27 If so, the caspase-dependent
cleavage inactivates Bcl-2 antiapoptotic function and
converts Bcl-2 into a Bcl-2 associated X-protein (Bax)-like
protein that enhances cell death.28 According to this
hypothesis, rather than inhibiting cell death, high Bcl-2
levels in HD cells could worsen neurodegeneration.
The Bcl-2 upregulation in HD patients seems to be
brain-specific given that no differences were found between
Bcl-2 protein levels in peripheral blood cells from patients with
HD and from controls.29

Few data are available about the other pro-survival
protein, Bcl-xL in HD: Bcl-xL protein levels were investigated
in the brain of HD mice, but no significant difference was
found in total-brain lysates, striatum lysates or mitochondrial
fractions in HD mice and controls.21,22,30 To our knowledge,
only one report suggests a role of Bcl-xL in HD. The
authors showed that Bcl-xL expression prevented the htt
proteolysis induced by DNA damage and hypothesized that
blocking Bcl-xL may activate the caspases that cause htt
proteolysis.31

The Pro-apoptotic BH3-only Proteins

The pro-apoptotic BH3-only proteins, by responding to
specific death and survival signals, function as sensors of
cellular damage. Activating one or more among the BH3-only
proteins culminates in allosteric activation of the pore-forming
proteins Bax and Bcl-2 antagonist/killer (Bak).

BH3-only proteins could activate Bax and Bak through two
mechanisms. The ‘direct activation’ model posits that certain
BH3-only proteins termed ‘activators’ (eg, Bcl-2 interacting
mediator of cell death (Bim), Bcl-2 interacting domain death
agonist (Bid)/truncated Bid (tBid) and p53 upregulated
modulator of apoptosis (Puma)) bind to Bax and Bak directly
triggering their oligomerization in the OMM, whereas other
BH3-only proteins, termed ‘sensitizers’ (eg, Bcl-2 antagonist
of cell death (Bad), Bcl-2/adenovirus E1B 19 kDa interacting
protein 3 (Bnip3) and Puma) would bind only to pro-survival
Bcl-2 family members, thus liberating ‘activator’ proteins.
Instead, the ‘indirect activation’ model posits that all the
BH3-only proteins bind to pro-survival Bcl-2 family members,
thereby preventing them from binding to and neutralizing Bax
or Bak.32

Bcl-2 Antagonist of Cell Death

Bad has a double function: it separately regulates apoptosis
and glucose metabolism in multiple cell types including
neurons.33,34 Investigating in vitro HD models, Rigamonti
et al.35 showed that Bad overexpression in immortalized
striatal cells induces apoptosis only in clones co-expressing
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mutated htt, thus suggesting that mutated htt toxicity induces
Bad-dependent cell death. For HD mouse models, no
differences in striatal Bad protein levels were found between
R6/1 and littermate controls.22 Also in the R6/2 mouse, no
change was found in the brain Bad protein levels. Conversely,
the investigators found a significant decrease in phosphory-
lated Bad (pBad) during the late-HD stages in R6/2 mice.21

Because pBad promotes mitochondrial respiration and ATP
production, whereas non-pBad binds the anti-apoptotic
partners Bcl-2 and Bcl-xL eliciting Bax and Bak activation,36

the low pBad/Bad ratio found in R6/2 brain lysates suggests
that Bad activity shifts from positive metabolic to negative
apoptotic function in HD cells.

Bcl-2 Interacting Mediator of Cell Death

The BH3-only pro-apoptotic protein Bim is expressed in three
major isoforms generated by alternative splicing: Bim short
(BimS), Bim long (BimL) and Bim extra-long (BimEL).
All these isoforms neutralize activity in pro-survival Bcl-2- like
proteins, but they differ in pro-apoptotic potency, BimS being
the most effective and BimEL the least effective killer.37 In the
mouse and human CNS, Bim is expressed primarily
in neurons, and the most expressed isoform in the brain is
BimEL.38,39

Several observations show that mutated htt causes BimEL
accumulation in various cell types. In particular, mutated htt
expression induces BimEL accumulation in HEK293T cells, in
Neuro-2a cells,40 in sympathetic superior cervical ganglion
neurons41 and in immortalized striatal cells.42 BimEL silencing
in Neuro-2a cells significantly reduces cell death elicited by
mutated htt.40

In the mouse model R6/2, high BimEL levels were found in
total-brain lysates and in mitochondrial fractions specifically
at the late stages of disease.21,40 These data found further
confirmation in two other HD mouse models showing
increased striatal BimEL in R6/1 mice at the late stages of
disease and in the conditional model Tet/HD94.22 Collectively,
these results demonstrate that mutated htt causes BimEL
accumulation and translocation to mitochondria.

Bcl-2 Interacting Domain Death Agonist

The BH3-only pro-apoptotic protein Bid is involved in neuronal
cell death in many neurological disorders such as stroke,43

ischemia44 and Alzheimer’s disease.45 Full-length Bid
has extremely weak pro-apoptotic activity but reaches its
strongest pro-apoptotic activity after proteolytic cleavage by
several proteases that produce truncated Bid (tBid).46 Bid
protein is widely expressed in embryonic and postnatal brain,
and its expression in post-mitotic neurons in the limbic
system, basal ganglia, mesencephalic tectum and cerebellum
persists at a high level into adulthood.15

Several lines of evidence show that mutated htt causes Bid
and tBid accumulation in neurons and in mitochondrial
neuronal fractions. In particular, western blot analysis for Bid
and tBid detection in HeLa cells and Neuro2A cells disclosed
that mutated htt transfection causes Bid cleavage.16

Increased Bid cleavage was also detected in brain lysates
from R6/2 mice at the middle stage of HD.21 Different results

come from the R6/1 model in which Garcı̀a-Martı̀nez et al.22

found no tBid accumulation, but instead found full-length Bid
at high levels in the striatum and in striatal mitochondrial
fractions. The Bid protein increase correlated with enhanced
Bid mRNA expression. Increased full-length Bid protein
levels were also found in the striatum in the conditional
mouse model of HD, Tet/HD94: Bid accumulation specifically
depended on mutated htt expression, given that transgene
suppression completely reverted Bid protein to wild-type
levels.22

Bcl-2/adenovirus E1B 19kDa Interacting Protein 3

Bnip3 has had an emerging role in human health, as
convincing evidence implicated its death, inducing activity in
heart diseases, whereas Bnip3 loss of function was asso-
ciated with tumor growth.47,48 Current knowledge shows that
Bnip3 is involved in cell death, autophagy and programmed
mitochondrial clearance.49 Bnip3 induces cell death through
at least two distinct mechanisms: Bnip3 can engage
anti-apoptotic Bcl-2 family members to trigger Bax–
Bak-dependent OMM permeability50 or can induce a novel
mitochondrial leak pathway by interacting with the optic
atrophy-1 protein (OPA1).51,52

Because Bnip3 is expressed in the brain and skeletal
muscle,53,54 in recent years, we undertook a study aimed to
investigate the potential role of Bnip3 in HD by assessing
Bnip3 level and localization in htt-transfected neuronal cells,
brain in HD mouse models and in muscle cells from HD
patients.55 We observed that mutated htt expression causes
Bnip3 accumulation in whole-cell lysates and in the mitochon-
drial fraction of SHSY5Y and HEK293T cells. We also found
higher Bnip3 protein levels in mitochondrial fractions from
R6/2 mice and in striatum from YAC128 mice than in littermate
controls. Finally, we observed that Bnip3 mainly co-localized
with the mitochondria in HD patients’ muscle cells, whereas in
control cells it mainly localized in the cytosol and nucleus.
We also observed that the expression of a dominant-negative
Bnip3 named Bnip3DTM56,57 rescued the mitochondrial
membrane potential loss in HD muscle cells.55 Overall, these
data suggest that mutated htt enhances Bnip3 activity in
neuronal and muscular cells.

p53-upregulated Modulator of Apoptosis/Bcl-2 Binding
Component 3 (Puma/Bbc3)

Puma/Bbc3 is a BH3-only protein identified in 2001.58,59

Puma/Bbc3 appears not to be expressed in the normal adult
brain, but its expression is strongly induced in some
brain diseases such as status epilepticus60 and cerebral
ischemia.61 Originally identified as a transcriptional target
of p53,58,59 Puma/Bbc3 is also transcriptionally induced in
neuronal cells undergoing ER stress-induced unfolded protein
responses (UPR).62 Few data are available about Puma/Bbc3
expression in HD models: in SCG neurons, mutated htt
expression leaves Puma/Bbc3 mRNA unchanged,41 whereas
in PC12 cells it increases Puma/Bbc3 protein sixfold.
Although Puma/Bbc3 protein accumulation in HD may depend
on mutated htt-induced ER stress, because this datum
remains unconfirmed in other HD models, the possible
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pathogenetic role of Puma/Bbc3 in HD needs further
clarification.

The Pore-forming Proteins Bax and Bcl-2 Antagonist/
Killer (Bak)

Bax and Bak act downstream of the pro-survival and
BH3-only members and have a key role in the mitochondrial
apoptotic pathway. Bak is normally inserted in the OMM;
Bax is predominantly cytosolic, but, once activated, it
translocates from the cytosol into the OMM where together
with Bak it forms the apoptotic pore, the point of no return in
mitochondrial apoptosis.63 Besides inducing apoptosis, Bax
and Bak influence mitochondrial fission–fusion dynamics in
healthy cells.1,2 Both Bax and Bak are expressed in neurons:
Bax is expressed in many regions in the human CNS64,65

including the human caudate nucleus;26 and Bak is
expressed in the human brain at the fetal, adult and elder
stages.66

Ample evidence underlining the link between Bax activation
and HD pathogenesis comes from research assessing Bax
protein levels and localization in neuronal cell culture models
of HD and in the brains of HD mouse models. Mutated htt
transfection in PC12 cells increased Bax protein levels
fourfold as compared with wt htt transfection;67 in Neuro2A

cells, mutated htt expression induced Bax translocation
from the cytosol to the mitochondria.40 Only one in vitro
study argues against a Bax role in mutated htt-induced
cell death: King et al.21 showed that in sympathetic superior
cervical ganglion (SCG) neurons mutated htt induced Bax-
independent cell death.

Studies in HD mouse models showed increased Bax levels
in the brain mitochondrial fractions from R6/1 and
R6/2 mice21,22 and increased Bax mRNA in the cortex and
cerebellum from R6/1 mice, brain areas in which Bax mRNA
correlated with the number of apoptotic nuclei.23 Bax
expression was also analyzed in the caudate nucleus from
HD patients. The cytoplasmic Bax signal was stronger in
caudate neurons from HD patients than from controls. Bax
expression was already maximal in HD brains at disease
onset and the highest in the most severely compromised
shrunken and dark neurons.26 Hence, data from HD mouse
models and human tissues converge to indicate that mutated
htt expression causes Bax protein accumulation and Bax
translocation to the OMM in neurons. Bax dysregulation in HD
seems not to be brain specific insofar as Bax protein levels
were also higher in lymphocytes and monocytes from HD
patients than from controls.29 This finding probably depends
on the fact that htt is ubiquitously expressed in human
tissues.68

Table 1 Evidence for Bcl-2 family protein dysregulation in cell culture models of HD (Significant differences between HD and control cells are highlighted in bold)
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Little is known about Bak levels in HD cells: Garcı̀a-
Martı̀nez et al.22 analyzed the R6/1 mouse striatum and found
equal Bak levels in R6/1 mice and littermate controls.
Although these data may indicate that Bak has no role in HD
cell death and mitochondrial dysfunction, others observed that
immortalized striatal cells overexpressing wt htt are comple-
tely protected from Bak-induced death.35 Whether and, if so,
how Bak intervenes in the pathogenic pathway induced by
mutated htt therefore remains an intriguing topic for further
investigation.

Through Which Molecular Pathway Could Bcl-2 Family
Proteins Cause Mitochondrial Dysfunctions and Cell
Death in HD?

By summarizing the data about Bcl-2 family proteins in cell
culture models of HD (Table 1), mouse models of HD (Table 2)
and cells and tissues from HD patients (Table 3), we
formulated a hypothetical model for explaining Bcl-2 family
protein activation in HD (Figure 1).

Because many results converge to demonstrate that
mutated htt causes BimEL activation (Tables 1 and 2), we

hypothesize that BimEL, a protein that in healthy cells
associates with cellular microtubule complexes,69 in HD
neurons localizes to mitochondria where, according to the
‘direct activation’ model (paragraph 2.2), it would trigger Bax
activation. This hypothesis receives support from evidence
that both BimEL and Bax accumulate in the mitochondrial
fractions from R6/1 and R6/2 mouse models. Alternatively,
according to the ‘indirect activation’ model, BimEL in HD cells
may bind to Bcl-2, thereby preventing it from neutralizing Bax.
In this context, Bcl-2 may have a neuroprotective role in HD.
This hypothesis receives support from evidence that Bcl-2
overexpression in neurons slows down neurodegeneration in
the R6/2 model.21 What remains unclear is how mutated htt
activates BimEL. An interesting clue comes from evidence
that BimEL expression is negatively regulated by the brain-
derived neurotrophic factor (BDNF).70,71 By wide consensus,
the HD mutation results in lower BDNF levels in the brain72

because htt is indirectly involved in transcriptional control over
the BDNF gene.73 Mutated huntingtin might therefore elicit
BimEL accumulation/activation by inhibiting BDNF expres-
sion. BimEL is also a well-known downstream target of
ER stress.74 Insofar, as proteins with an abnormally long

Table 2 Evidence for Bcl-2 family protein dysregulation in mouse models of HD (Significant differences between HD and control cells are highlighted in bold)

Mouse model Observations / Results Reference

At 16 weeks Bid and BimEL protein in the striatum.

At 30 weeks Bid, Bax and BimEL protein in the striatal mitochondrial fractions.

At 30 weeks Bid and BimEL protein in the striatal cytosolic fractions.

At 30 weeks Bid mRNA,  in the striatum.

At 12, 24 and 36 months Bax mRNA in cerebellum and cortex.

At 9 weeks Bid and tBid protein in total brain.

At 9 and 12 weeks Bax protein in mitochondrial fractions.

At 12 weeks BimEL protein in mitochondrial fractions.

At 13 weeks BimEL protein in the striatum.

At 10.5 and 12 weeks Bcl-2 protein in the striatum.

At 12 weeks Bcl-2 mRNA and Bcl-2 protein in total brain.

At 22 months, transgene ON Bid and BimEL protein in the striatum.

At 22 months, transgene OFF  and BimEL protein.

At 12 weeks Bcl-2 protein in the striatum.

At 6 weeks Bnip3 protein in striatum and striatal mitochondrial fractions.

At 10 weeks BNip3 protein in total lysates and  in striatal mitochondrial fractions.

At 12 weeks BimEL and pBad protein in total brain.
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polyglutamine expansion cause ER stress,75 BimEL activa-
tion in HD may also depend on mutated htt induced-UPR.
A question awaiting further research is whether Puma/Bbc3,
the other potent BH3-only protein activated in response to
ER stress, has a role in HD.

Another BH3-only protein potentially involved in HD
pathogenesis is Bid. In HD models, mutated htt elicits Bid
cleavage or full-length Bid accumulation or both events
(Tables 1 and 2). Bid activation was suggested as a key
event in many neurodegenerative diseases because Bid is
highly expressed in neurons.76 In HD cells, full-length Bid
and tBid, by migrating to mitochondria, could sustain Bax
activation,77 thus amplifying the mitochondrial damage.

The molecular mechanism by which mutated htt causes
full-length Bid to accumulate is undefined. Because full-length

Bid pro-apoptotic activity is extremely weak, high Bid
expression levels are nevertheless unlikely to cause cell
death in HD. Conversely, because tBid exhibits strong pro-
apoptotic activity, it may have a key role in HD cell death. This
possibility receives support also from evidence that mutated
htt enhances activity of caspase-878, 79 and calpain80 that both
enzymes are able to cleave full-length Bid.46

The most recently BH3-only protein potentially implicated in
HD pathogenesis is Bnip3. Our results provide evidence that
Bnip3, an apoptotic regulator that in healthy cells localizes
to the cytosol or the nuclei, in neuronal and non-neuronal cells
expressing mutated htt mainly localizes to the mitochondria.55

Because Bnip3 activation causes Dc loss, mitochondrial
fragmentation and mitophagy,51,81 Bnip3 could be implicated
in the mitochondrial dysfunction in HD. Precisely, how

Bax

BimEL
mhtt

BDNF

tBid

Bid

mhtt

Bcl-2
Bad

Bad
P

Bnip3 mhtt

mhtt

OMM

Bcl-xL

mhtt

ER
stress

lossof potential

↑fragmentation↓ATP ↓Ca++
handling

Figure 1 Hypothetical model explaining the pathway through which mutated htt (mhtt) causes OMM permeabilization. Bax activation in HD may depend on the ‘activators’
BH3-only proteins and the ‘sensitizers’ that bind only to pro-survival proteins Bcl-2 and Bcl-xL. Mutated htt may interact with the Bcl-2 protein network at multiple levels by
modulating Bcl-2 expression, inducing Bid accumulation and Bid cleavage, promoting BNip3 activation and increasing non-pBad levels. BimEL accumulation/activation may
depend on htt control over BDNF expression or ER stress-induced UPR or both mechanisms

Table 3 Evidence for Bcl-2 family protein dysregulation in HD patients’ cells (Significant differences between HD and control cells are highlighted in bold)
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mutated htt induces Bnip3 activation remains an unanswered
question. Previous reports show that the Bnip3–mitochondria
association is strongly stabilized by acidosis82,83 or by an
increased cytosolic calcium concentration,84 conditions that
may both take place in HD cells owing to mitochondrial
respiration inhibition. An alternative possibility is that htt binds
directly or indirectly to Bnip3, but this issue awaits elucidation
in future studies.

Summary and Perspective

Current evidence, derived from research efforts by many
investigators over a lengthy time-span, increasingly implies
that mutated htt adversely influences Bcl-2 family protein
levels and localization. Studies conducted in vitro and in vivo
provide convincing evidence that mutated htt expression
activates at least four BH3-only proteins. Although mutated htt
may upregulate each of these four proteins through different
mechanisms, their activation culminates in an identical
consequence, namely Bax activation. Bax activation, by
promoting cytochrome c release, may underpin the progres-
sive neuronal apoptosis in HD patients’ brains. Although this
hypothesis receives support from early studies that identified
apoptotic-like cells in the HD striatum,85,86 evidence for HD
cell death arising through apoptosis alone is controversial.87

An alternative possibility is that Bcl-2 protein family dysregu-
lation alters HD mitochondrial dynamics in an apoptosis-
independent manner. Especially interesting in this context is a
report that Bax-induced mitochondrial fission and Bax-
initiated cytochrome c release are separable events and that
Bcl-2 family proteins can influence mitochondrial fission–
fusion dynamics in HD cells independently of apoptosis.1,2 If
true, Bcl-2 family proteins in HD may be responsible for the
fragmented mitochondrial morphology, changes in mitochon-
drial ultrastructure and impaired mitochondrial trafficking
demonstrated in in vitro and in vivo models of HD.88–90

Future studies should aim to go beyond analyzing Bcl-2
family protein levels because their expression level often
poorly indicates protein activation, especially given that most
BH3-only members undergo strong regulation by post-
translational mechanisms. Future studies aimed to elucidate
the molecular mechanisms underlying the Bcl-2 protein
interactions documented in in vitro and in vivo HD models
will exploit innovative fluorescence techniques91 that may
more clearly illustrate the Bcl-2 role in HD. Equally important
are the genetic approaches such as crossing HD mouse
models onto mice knockout for Bcl-2 genes that will provide
definitive proof that Bcl-2 family members are pathogeneti-
cally involved in HD.

Finally, future studies involving innovative human cellular
models such as iPS from patients with HD, will clarify whether
Bcl-2 family proteins, already molecular targets in cancer
therapy,92 may also be a therapeutic target for HD.
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