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Thrombocytopenia induced by the histone deacetylase
inhibitor abexinostat involves p53-dependent
and -independent mechanisms

A Ali1,2,3, O Bluteau1,2,3, K Messaoudi1,2,3, A Palazzo1,2,3, S Boukour1,2,3, L Lordier1,2,3, Y Lecluse4, P Rameau4, L Kraus-Berthier5,
A Jacquet-Bescond5, H Lelièvre5, S Depil5, P Dessen6, E Solary1,2,3, H Raslova1,2,3, W Vainchenker1,2,3, I Plo1,2,3 and N Debili*,1,2,3

Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other
HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its
effect at doses reached in patient plasma on in vitromegakaryopoiesis derived from human CD34þ cells. When added at day 0 in
culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only
a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/
JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet
(PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51
decrease at protein level. DNA double-strand breaks were increased as attested by elevated cH2AX phosphorylation level.
Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA
rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia
by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.
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Acetylation/deacetylation of lysine residues is one of the post-
translational modifications that modulate the function of
proteins as histones and non-histone proteins such as the
transcription factor GATA1, the chaperone HSP90, tubulin
and p53.1–3 These modifications are regulated by histone
acetyl transferases and histone deacetylases (HDAC).4–7 The
four classes of HDAC (I, IIa, IIb and IV)8 display common and
specific functions and localizations, for example, class I
HDACs are nuclear enzymes, whereas class II and IV HDACs
are both in the nucleus and in the cytoplasm. Their main
function is the co-repression of gene transcription by remov-
ing acetyl groups from lysine residues located in the NH2
terminal tail of histone 3 and 4. HDACs by this mechanism
have a central role in the regulation of the DNA repair cell
machinery.9,10

The compounds known as HDAC inhibitors (HDACi) that
induce a shift in the balance between acetylation and
deacetylation of proteins represent a new class of anticancer
agents.6 This has been initially demonstrated in acute
promyelocytic leukemia cells, in which the recruitment of a
HDAC by the PLZF-RAR fusion protein represses RAR target
genes and HDACi restore the ability of retinoic acid to induce

leukemia cell differentiation.11,12 In this model, HDACi also
promote the transcriptional activity of p53 through increasing its
acetylation.2 These drugs have now been tested in a broad
range of malignancies including T-cell lymphomas,13 myelo-
proliferative neoplasms (MPN), gliomas and colon cancers.14,15

They can induce cell cycle arrest through p21 induction, and
apoptosis through radical oxygen species overproduction.16

Although some HDACi are specific of a class of HDAC, for
example, those derived from the bicyclic depsipeptide, such
as Romidepsin, preferentially target class I HDAC,17 most of
them, such as panobinostat and abexinostat (S78454,
PCI-24781), derive from a hydroxamic acid structure and
are pan HDAC inhibitors. Thrombocytopenia, which is a
constantly observed side effect of these drugs, is limiting dose
escalade and drug combinations.18–22 The molecular
mechanisms of these thrombocytopenia remain a matter of
speculation. Conditional knock-out of hdac1 and hdac2 genes
in mice induces a thrombocytopenia by inducing megakar-
yocyte (MK) apoptosis,23 and both Panobinostat and Romi-
depsin induce a thrombocytopenia in mice. Noteworthy, this
drug effect, probably involving actomyosin cytoskeleton, was
rescued by thrombopoietin (TPO)mimetics.24 It has also been
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suggested that a very low dose of Panobinostat could inhibit
proplatelet (PPT) formation through increasing the level of
acetylated tubulin.25 This drug could also downregulates
GATA1 expression at both transcriptional and post-transcrip-
tional levels.26

By investigating the effects of pharmacologically relevant
doses of the pan-HDACi abexinostat, on human megakar-
yopoiesis derived in vitro from CD34þ cells, we demonstrate
here that the compound has two main effects. It inhibits MK
differentiation by inducing progenitor and precursor apoptosis
through silencing of several DNA repair genes, including
RAD51, leading to the accumulation of DNA double-strand
breaks (DSBs) and the induction of p53. In addition, a defect in
PPT formation was found, which wasmainly p53-independent
suggesting that Abexinostat directly targets some effectors
implicated in PPT formation.

Results

The pan-HDAC inhibitor Abexinostat inhibits hematopoietic
colony formation. We explored the effects of drug doses
ranging from 10 to 100 nM on the ex vivo growth of human

hematopoietic progenitor cells because it has been shown
that the peak plasma concentration of abexinostat (called
also PCI-24781, S78454) ranges from 295 to 185 nM at 4 h
post dose27 and these doses in ex vivo experiments were
found to be toxic. When abexinostat was added to the
CD34þ cells at the onset of the methylcellulose cultures, no
significant effect was seen at 10 nM compared with control
cultures. However, the total number of colonies, including
mixed colonies derived from CFU-GEMM progenitors, was
nearly 50% reduced in the presence of 50 nM abexinostat
and more than 60% at 100 nM in adult CD34þ cells whatever
their origin derived either from leukapheresis or bone marrow.
BFU-E were more sensitive to abexinostat than CFU-GM, as
the decrease in BFU-E-derived colonies reached 60% and
70% at 50 and 100nM, respectively, versus 30% and 50% for
CFU-GM-derived colonies (Figures 1a and b). The most
dramatic dose-dependent effect was on the CFU-MK growth
inhibition assessed in fibrin clots that reached 62.5% at 50nM
and more than 90% at 100nM (Figure 1c).
Because abexinostat was added at the onset of the culture

and all along, it was possible that the reduction in colony
formation was due to an effect on the differentiation process.
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Figure 1 The pan HDACi abexinostat (A) decreases hematopoietic progenitors growth. Representative experiments are shown to illustrate the number of progenitors
generated in a semi-solid assay in the presence of indicated doses of abexinostat, n¼ 3. In each experiment, CD34þ cells were seeded in triplicate. Results: mean±S.E.M.,
***Po0.0001; **Po0.004; *Po0.05. (a and b) Number of BFU-E, CFU-GM CFU-GEMM and total colonies (total CFU) generated by plating 500 CD34þ cells from
leukapheresis or bone marrow samples in methylcellulose assays in the presence of SCFþ IL-3þEPOþG-CSFþ IL-6 as described in Materials and Methods.
(a) Leukapheresis samples; (b) bone marrow exposed all along the culture or only 24 h to abexinostat. (c) Number of CFU-MK colonies generated by plating 1000 CD34þ cells in
a fibrin clot assay in the presence of TPOþSCFþ IL-6. (d and e) Number of CFU-MK colonies generated by plating CD34þ cells from leukapheresis (d) exposed 24 h to the
indicated concentration of abexinostat, then washed before plating 500 CD34þ cells or from bone marrow samples exposed all along the culture or only 24 h to abexinostat (e)
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Thus, to test the effects of an exposure for a short period,
CD34þ cells were seeded in liquid serum-free medium
supplemented with cytokines and exposed during 24 h to
abexinostat at 10, 50 or 100 nM. Then abexinostat-treated
cells were washed and plated in methylcellulose or fibrin
assay. A marked inhibition of mobilized or bone marrow
CFU-MK growth was also found demonstrating that
abexinostat acts at the level of CFU-MK (Figures 1d and e).
Similar results were found for BFU-E and CFU-GM growth
(Figure 1b) further demonstrating that abexinostat acts at the
level of hematopoietic progenitors.

The pan-HDAC inhibitor abexinostat alters CD34þ cell
proliferation and induces apoptosis. Because abexino-
stat decreased the cloning efficacy of CFU-MK, we tested the
effects of increasing doses of abexinostat (1, 5, 10, 20, 50
and 100 nM added at the onset of culture and all along the
culture) on the generation of MK from CD34þ cells in a
serum-free liquid culture supplemented with TPO. Cell
counts were performed at day 6 of culture. Abexinostat led
to a dose-dependent decrease in alive cell number, with
nearly 90% inhibition at 100 nM (Figure 2a). This decrease
was associated with an increase in apoptotic cells as
revealed by the increase of the Annexinþ IPþ cell population
(38.6%, 45.4% and 51.8%, respectively, for 20, 50 and
100nM versus 34% for control, mean of three independent
experiment, Figure 2b). A representative experiment is
shown in Figure 2c. These results show that the drug-
induced decrease in cell amplification correlates with an
increase in apoptosis.
To study the effects of abexinostat during MK differentia-

tion, we added the HDACi at day 3 and analyzed the
culture at day 10. As expected, apoptosis was elevated in
control cultures as 50% of MKs were cells at the end
of differentiation. Nevertheless, abexinostat treatment
increased the percentage of cells in apoptosis as attested
both by the subG1 peak (data not shown) and the presence
of annexin V-positive cells (Supplementary Figure 1). The
mean of three independent experiments showed a marked
decrease in ploidy level in cultures treated with 50 or 100 nM
abexinostat (2.59 and 2.35N, respectively) compared with
3.82N (control) or 3.66N (10 nM) leading to a nearly
complete absence of 44N MK at 100 nM (Figure 2d and
representative experiment in Figure 2e). To analyze
whether the effects of abexinostat on polyploidization were
either indirect by early apoptosis of MK progenitors or direct
by affecting the ploidization process, abexinostat (100 nM)
was added in culture either at day 1 or at day 8 and the ploidy
was measured at both day 8 and 10 (Figure 2f). When
abexinostat was added at day 1 of culture, the mean ploidy
level measured at day 10 was decreased (2.51N) compared
with control cultures (4.7 N). In contrast, when added at
day 8, abexinostat had no significant effect on ploidization
(day 8 ploidy: 3.8 N, day 10 ploidy without abexinostat:
4.7 N and day 10 ploidy with abexinostat; 4.03N) suggesting
that abexinostat had minor direct effects on the ploidization
process.

The pan-HDACi abexinostat prevents PPT formation.
Addition of the pan-HDACi at day 8 of the culture was

observed to decrease PPT formation quantified 4 days later,
that is, the decrease in PPT formation was already 45% at
10 nM, reached 95% at 50 nM and was virtually complete at
100 nM (Figures 3a and b). Low concentrations (eg, 20 nM)
modified the structure of the PPTs with less branching
extensions (Figure 3a, iii), whereas PPT inhibition observed
at higher concentrations was associated with an apoptotic
MK morphology (Figure 3a, iv, v). To understand if this defect
in PPT formation only required a short treatment, MKs from
control cultures (day 8) were incubated with 100 nM of
abexinostat for only 24 h and PPT formation was scored
4 days later (day 12). A similar inhibition of PPT formation
was observed (Figures 3c and d), suggesting that HDACi
directly affect the PPT formation process.

Abexinostat had minor effects on the TPO/MPL/JAK2
signaling pathway. MK differentiation is controlled by JAK2
activation mediated by TPO binding to MPL.28 It has been
underscored that HDAC inhibitors were able to inhibit the
chaperone function of HSP90 leading to JAK2 degradation,
especially in cells expressing the mutant JAK2V617F and
subsequently to apoptosis.29 We thus studied whether
alteration in the TPO signaling could be seen in MKs after
abexinostat treatment. To this aim, CD41þ cells were sorted
at day 7 of culture, seeded in serum-free medium with TPO
with or without 50 nM abexinostat for 4 additional days. Then,
MKs were TPO-deprived 12 h in the presence or absence of
50 nM abexinostat and then stimulated during 10min, 1 h and
24 h with TPO and with or without 50 nM abexinostat
(Figure 4a). The total JAK2 level was slightly modified in
comparison to the control at 24 h. No changes were observed
in the phosphorylation of STAT3 and ERK except a slight
decrease for STAT5. Similar results were obtained when
sorted day 7 MKs were treated only for 24 h with abexinostat
(data not shown). This result suggests that although inducing
a moderate decrease in JAK2, abexinostat did not
significantly alter the MPL/TPO/JAK2/STAT signaling.
However, it may alter other TPO-dependent or -independent
pathways such as BMP4 signaling.30

Abexinostat treatment leads to a decrease of DNA
repair and DNA DSBs. To investigate the mechanisms of
abexinostat-induced inhibition of MK differentiation, we
performed a transcriptional profiling on MKs sorted at day 7
and cultured for 24 h in the presence or absence of 100 nM
abexinostat. A change in expression in a large number of
genes was observed after abexinostat treatment (1012
genes upregulated and 476 genes downregulated with a
P-value of 1� 10� 5 and an absolute fold change 42). Gene
set enrichment analysis between the treated and untreated
cells reveals that the great majority of pathways in MSigDB
database was not affected. Indeed in the three subsets
pathways KEGG, Biocarta and Reactome only 14/186, 0/217
and 18/430, respectively, appears differential. DNA repair,
DNA DSB, DNA recombination and response to DNA
damage were the most prominent signatures of abexinostat-
treated cells (Figure 5a), underscoring the key role of
HDAC on the DNA repair mechanism.9,10 In contrast, genes
implicated in DNA repair such as RAD51, AP1, Exo1,
TIMELESS-interacting protein or BRCA1 were decreased
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by twofold to nearly threefold (Table 1). As RAD51 is one of
main protein involved in DSB repair through homologous
recombination, we studied its expression at the protein level
and found a near complete disappearance of the protein
(Figure 5b) as previously reported in the HCT116 colon cell
line.31 The expression level of gH2AX detected by western
blotting was used as a surrogate marker of DSB and a
marked increase in gH2AX level was seen after abexinostat
treatment (Figure 6a). Moreover, ATM phosphorylation
responsible in turn of gH2AX was also observed after
abexinostat treatment (Figure 6a).
DNA-damage accumulation is usually associated with a

DNA-damage response characterized by a halt in proliferation
and apoptosis through usually p53-dependent or -indepen-
dent mechanisms. Thus, we studied whether p53 was
activated after abexinostat treatment.

Abexinostat treatment induces p53 activation in MKs.
To understand if the p53 pathway was induced, purified MKs
were treated with increasing doses of abexinostat during 48 h
and qRT-PCR and western blots were performed.
Subsequently to ATM phosphorylation (Figure 6a), we found
a p53 increase in MKs treated with abexinostat (data not
shown) as well as its phosphorylated form on Serine 15
(Figure 6c). This was associated with an increased apoptosis
as shown by the complete cleavage of caspase 3 at
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100nM abexinostat (Figure 6b). These results indicate that
abexinostat may lead to caspase-mediated apoptosis
through DSB induction that activates a p53-dependent
pathway. Two p53 target genes, P21 and BAX, were induced
after HDACi as shown by qRT-PCR, further demonstrating
the functional activation of p53 (Figure 6d). BAX was also
induced at protein level in a dose-dependent manner by
abexinostat, whereas the anti-apoptotic protein BCL-xL was
decreased by half at 50 nM and by more than 80% at 100 nM
(Figure 6c).

p53 knockdown decreases apoptosis induced by
abexinostat, but does not rescue PPT formation. To
study whether p53 silencing could revert the apoptosis
induced by abexinostat, MKs were transduced at day 5 of
culture with either a lentivirus vector encoding a shRNAp53
(shp53) and GFP or the same vector containing an irrelevant

Table 1 Transcriptome analysis

Genes involved in DNA repair Fold
change

Homo sapiens TIMELESS-interacting protein (TIPIN) �2.17
RAD51-associated protein 1 (RAD51AP1) �2.47
Homo sapiens Fanconi anemia, complementation group G �2.07
Homo sapiens Fanconi anemia, complementation group A
(FANCA)

�2.8

Homo sapiens Fanconi anemia, complementation group E
(FANCE)

�2.07

Homo sapiens RAD51 homolog (RecA homolog, E. coli;
S. cerevisiae) (RAD51)

�2.19

Homo sapiens RAD54-like (S. cerevisiae) (RAD54L) �2.54
Homo sapiens exonuclease 1 (EXO1), transcript variant 3 �2.81
Homo sapiens nonhomologous end-joining factor 1
(NHEJ1)

�2.05

Homo sapiens BRCA1-interacting protein C-terminal
helicase 1 (BRIP1)

�2.9

Figure 5 Abexinostat modulates expression of genes involved in DNA repair. (a) Gene set enrichment analysis (GSEA) of CD41þ cells treated with 100 nM of abexinostat
reveals that DNA repair, DNA double-strand break (DSB), DNA recombination and response to DNA damage were the most prominent signatures of abexinostat-treated cells.
(b) RAD51 protein level by immunoblot analysis. Day 7 CD41þ -sorted MK were cultured for 48 h with TPO with or without increasing the dose of abexinostat. HSC70 was
used as loading control
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sequence (SCR). MKs were sorted at day 7 on both CD41
and GFP expression, and cultured in the presence or
absence of 10, 50 and 100 nM abexinostat for 2 days prior
performing flow cytometry analysis. The shp53 led to a nearly
complete inhibition of the p53 protein expression as shown in
Figure 7a. Interestingly, this p53 knockdown totally
prevented abexinostat to induce apoptosis whatever the
concentration used, including the highest concentrations, as
assessed by Annexin V staining (Figure 7b). In addition, in
the absence of abexinostat, p53 knockdown decreased the
number of apoptotic MKs compared with the shSCR (18.8
versus 10% and 32 versus 11.3 in two experiments).
PPT formation was subsequently studied. The level of
PPT formation was always lower in the controls transduced
with the shSCR than in untransduced cells (compare Figures
3 and 7). However, the shp53 increased threefold PPT

formation in comparison to the shSCR (Figure 7d), suggest-
ing that p53 may negatively regulate PPT formation in vitro
by a mechanism, which remains to be investigated. However,
the p53 knockdown could not completely rescue the
inhibition of PPT formation induced by abexinostat. Indeed,
when shp53-transduced MKs were treated by 50 nM abex-
inostat, an increased PPT formation was seen (2.5% in
shp53-transduced MKs compared with 0.6% in SCR-trans-
duced MKs), but normal values (around 12% for the shp53
and 5% with the shSCR) were not reached (Figure 7d).
Furthermore, in the presence of 100 nM abexinostat, no PPT
formation by shp53-transduced MKs was seen despite the
fact that they remained alive with a spherical appearance
(Figure 7c).
Altogether, these results show that abexinostat affects

in vitro megakaryopoiesis by two mechanisms: one at the
level of hematopoietic progenitors and during differentiation
by induction of apoptosis through a p53 mechanism related to
induction of DSB and at the level of PPT formation by
p53-dependent and -independent mechanisms.

Discussion

HDAC inhibitors (HDACi) are currently tested in the treatment
of a wide range of malignancies32 and transient but severe
thrombocytopenia is their prominent, dose-limiting side effect.
A thrombocytopenia is observed in up to 30% of the patients
and can be either isolated or associated with other
cytopenias.18–20 The molecular mechanisms of this thrombo-
cytopenia remain a controversial issue. Here, we show in
human primary MKs established in culture that the
pan-HDACi abexinostat also called S78454 or PCI-24781, a
pan-HDACi structurally related to hydroxyamic acid that is
representative of this compound class, has two distinct
effects at pharmacologically relevant doses: it promotes MK
apoptosis in a p53-dependent manner, and it decreases PPT
formation independently of p53.
HDACi have been shown to induce cell cycle arrest and/or

apoptosis through different mechanisms, including down-
regulation of anti-apoptotic proteins such as BCL2, upregula-
tion of apoptotic proteins such as BAX and BAK, and
overproduction of radical oxygen species.16 These effects,
initially related only to the acetylation of histone proteins that
regulate gene transcription, can also be explained by the
acetylation of non-histone proteins,8,9 as recently under-
scored in JAK2V617F MPN.32,33 In the mouse, hdac1 and
hdac2 double knockout, which encode two class I HDACs,
demonstrated that the global level of class I HDACwas critical
for erythroid development and even more for the MK
lineage.23 A complete deletion of hdac1 associated with
hdac2 haploinsufficiency was sufficient to dramatically reduce
the MK number in bone marrow through apoptosis induction
and the platelet count in blood.23

At 100 nM that is the lower concentration compared with the
peak plasma concentration of abexinostat also called
PCI-24781 in humans,27 we show here that the pan-HDACi
completely abolishes the growth of MK colonies, due tomainly
apoptosis induction in both MK progenitors and precursors.
This effect of abexinostat on progenitors was not specific of
the MK lineage and was found on multipotent progenitors
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BFU-E and CFU-GM. However, CFU-MKs were more
sensitive to abexinostat than the other progenitors and CFU-
GEMMM and BFU-E more sensitive than CFU-GM.
In JAK2V617F MPN, HDAC inhibition promotes the kinase

degradation through probably inhibition of HDAC6 and
consequently by altering the chaperone effect of
HSP90.34,35 This mechanism preferentially targets the
mutated version of JAK233 and does not appear to account
for abexinostat toxicity toward human MKs, in which the JAK/
STAT signaling remains operative. However, MK survival,
proliferation and differentiation may also depend on the
BMP4/receptor loop30 and on other signaling pathways such
as the mTOR pathway. We cannot exclude that HDACi may
operate on these regulatory pathways because a decrease in
the level of mTOR transcripts was found in gene profiling
(http://www.ebi.ac.uk/arrayexpress/) and was confirmed by
qRT-PCR. This will require further investigations.
HDACi were also reported to affect the DNA repair

machinery functioning.31,36–38 In this line, we found that
several DNA repair pathways, both in non-homologous end
joining and homologous recombination, are altered in human
MKs exposed to the pan-HDACi. The decreased expression
of RAD51, which is the most important effector in homologous
recombination, together with the increase in gH2AX level,
argued for a DSB-processing defect similar to that observed in
abexinostat-treated tumor cell lines exposed to radiation.30

We show that exposure of human MKs to the pan-HDACi

induces ATM phosphorylation, stabilizes and phosphorylates
p53 and promotes the induction of several p53 target genes,
whereas p53 knockdown rescues the apoptotic phenotype.
Mice treated with Panobinostat or Romidepsin (class I

HDACi)24 and Lewis rats treated with FR23522526 exhibit a
decrease in their platelet counts without apoptosis of their
bone marrow MKs, suggesting an alternative mechanism of
toxicity. This alternative mechanism is presumably a defect in
PPT formation,24 which may occur at a lower dose. Accord-
ingly, we observed a defect in PPT formation starting at 10 nM
abexinostat and this defect was only partially rescued by the
downregulation of p53. The mechanisms that could account
for the decreased formation of PPT upon inhibition of HDAC
include the defective nuclear translocation of NF-kB, the
downregulation of GATA1 and NF-E2,39,40 the deregulation of
GATA1/FOG1 interaction or the function by acetylation of
GATA1,1,41 as well as changes in the remodeling complex
(NuRD) that recruits these transcription factors to their
targets.42,43 Cytoskeleton abnormalities have also been
involved in HDACi-induced thrombocytopenia, as a conse-
quence of altered expression of several Rho GTPases,24

which was not observed in our experiments in gene array
analysis (http://www.ebi.ac.uk/arrayexpress/). The disrupted
microtubule organization observed in HDACi-treated MK was
also correlated to tubulin hyperacetylation.26 HDAC6, which is
responsible for tubulin deacetylation, is a key regulator of the
cytoskeleton,44 but thrombocytopenia had not been described
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in hdac6 knockout mice.45 In addition, class I HDACi such as
Romidepsin, which induces a thrombocytopenia, have a
minor effect on HDAC6. During the experiments reported
here, we noticed marked changes in the mRNA expression
level of myosin genes such as MYH10 or MYL9
(http://www.ebi.ac.uk/arrayexpress/). Interestingly, down-
regulation of MYL9 could provoke a marked decrease in
PPT formation.46 The regulation of myosin light chains by
HDAC and their role in HDACi-induced inhibition of PPT
formation will therefore require further investigation.
Altogether, the present study uses the pan-HDACi

abexinostat to demonstrate that thrombocytopenia classically
induced by this class of anticancer drugs involves two
complementary mechanisms. The first one involves the
deregulation of the DNA repair machinery, leading to p53
activation and apoptosis induction. The second that could
occur at a lower dose is the inhibition of PPT formation, which
is both p53 dependent and independent and may be related in
part to cytoskeleton modifications.

Materials and Methods
Isolation of CD34þ cells. CD34þ cells were obtained from leukapheresis
samples after mobilization performed on patients or from bone marrow from
patients undergoing hip surgery after informed consent in agreement with our
Institute Ethic Committee (Assistance Publique des Hôpitaux de Paris) and in
accordance with the Declaration of Helsinki. CD34þ cells were isolated by a positive
selection using an immunomagnetic cell sorting system (AutoMacs; Miltenyi Biotec,
Bergisch Gladbach, Germany) and cultured in serum-free medium in the presence of
recombinant human (rhu) TPO (10 ng/ml; Kirin Brewery, Tokyo, Japan).

Quantification of clonogenic progenitors in semi-solid
cultures. CD34þ cells were plated either in 1% methylcellulose assay
(StemCells technologies, Vancouver, Canada) to quantify Erythroid (BFU-E) and
granulocytic (CFU-GM) progenitors or in serum-free fibrin clot assay46 for
quantification of MK progenitors (CFU-MK) in the absence or presence of various
concentration of abexinostat. Cultures in methylcellulose were stimulated by addition
of rhu growth factors: G-CSF (20 ng/ml), IL-3 (100 U/ml) SCF (50 ng/ml, Biovitrum
AB, Stockholm, Sweden), IL-6 (100 U/ml) and human EPO (1 U/ml). Cultures in fibrin
clot were stimulated with 10 ng/ml TPO (Kirin Brewery, Tokyo, Japan) and 50 ng/ml
SCF. They were incubated at 37 1C in a fully humidified atmosphere containing 5%
CO2 in air and scored after 12–14 days for BFU-E-, CFU-GM and CFU-GEMM-
derived colonies using an inverted microscope. MK colonies were enumerated at day
12 after labeling by an indirect immuno-alkaline phosphatase staining technique using
an anti-CD41a monoclonal antibody (MoAb; Becton Dickinson, le Pont de Claix,
France; clone HIP8), as previously described.47 Culture dishes were entirely scanned
under an inverted microscope at � 4 or � 10 magnification.

Liquid serum-free medium and purification of the CD41þ cell
population. CD34þ cells were cultured in serum-free liquid medium in the
presence of TPO (10 ng/ml). Ingredients used to prepare the serum-free medium
were as previously described.48 To purify the CD41þ cell population, cells in
suspension culture were collected at days 6–7, stained with an anti-CD41a-
phycoerythrin (PE) monoclonal antibody (MoAb; PharMingen, San Diego, CA,
USA) and selected by cell sorting (Influx, Becton Dickinson). The purified CD41þ

cell population was subsequently grown in serum-free liquid medium without or
with TPO and in the presence or absence of abexinostat for an additional 24 h.
When stated, CD41þ cells were starved overnight from TPO and then TPO
stimulated for different time periods without or with abexinostat and cells were
recovered in dry pellet for subsequent analysis.

PPT formation. For PPT formation studies, CD41þ -sorted cells were seeded
in 96-well plates in serum-free liquid medium supplemented with 10 ng/ml TPO
and increasing concentration of abexinostat. MK displaying PPT were counted as
previously described.48

Western blot analysis. CD41þ cell population was harvested at different
times of culture, washed once in PBS, lysed in 2� Laemmli buffer (100 mM Tris

pH 6.8, 20% glycerol, 4% SDS, 0.05% bromophenol blue and 10 mM DTT).
Lysates were gently sonicated on ice. Samples were boiled 5 min in loading buffer
and subjected to 10 or 12% SDS-PAGE gel. After transfer, nitrocellulose
membranes were blotted with the following antibodies: anti-pSTAT3, STAT3,
pSTAT5, STAT5, pJAK2, JAK2, pERK, ERK, pH2AX, pP53, P53, pATM, ATM
(all from Cell Signaling, Ozyme, Saint Quentin Yvelines, France), RAD51 polyclonal
(Millipore, Molsheim, France), BAX monoclonal (Oncogene Research, Millipore) and
a rat monoclonal anti-HSC70 (Stressgen, British Columbia, VIC, Canada). Primary
antibodies were revealed with appropriate secondary antibodies conjugated with
horseradish peroxidase and the filters were developed with an enhanced
chemiluminescence system (ECL detection kit, Amersham, Orsay, France).

Cell cycle analysis. CD34þ cells were grown in liquid serum-free medium in
the presence of TPO (10 ng/ml). Cultures were treated continuously for 48 h or for
only 24 h with abexinostat. Non-treated cultures served as control. Cells were
stained for 30 min at 4 1C with propidium iodide (50 mg/ml; Sigma, Saint-Quentin
Fallavier, France) in hypotonic sodium citrate solution containing 50 mg/ml RNAse
(Sigma-Aldrich, Lyon, France) followed by flow cytometry analysis.

Assessment of apoptosis by Annexin-V staining. To assess
apoptosis in the CD34þ cell population, untreated and abexinostat-treated cells
were stained with annexin-allophycocyanin and propidium iodide. At the level of
mature MKs, untreated and abexinostat-treated cells were stained with a
monoclonal anti-CD41þ allophycocyanin-conjugated antibody for 30 min at 4 1C,
washed and stained with Annexin-V PE (BD Bioscience, Pharmingen, Le Pont de
Claix, France) and 7AAD. The percentage of apoptotic cells was determined by
flow cytometry.

Assessment of percentage of viable cells. CD34þ cells were seeded
in triplicate in the presence or absence of increasing doses of abexinostat
(1 to 100 nM). After treatment, cells were stained with trypan blue. The numbers of
viable cells were determined with a hemocytometer and results are expressed as
the total alive number cells/ml.

Gene expression arrays. Two replicates S1 and S2 of CD34- CD41þ -
sorted cells at day 7 were grown in serum-free medium with TPO (10 ng/ml) and
treated with abexinostat for 24 h. Total RNA was extracted from non-treated and
treated cells using a RNA extraction kit according to manufacturer protocol
(Norgen Biotek Corp, Thorold, ON, Canada). Briefly, probes were synthesized
from 500 ng of total RNA in two steps, according to the manufacturer’s
instructions. In each comparison, the two samples were labeled separately with
different fluorescent dyes, cyanine-3 (Cy3) and cyanine-5 (Cy5). For each sample,
1 mg of purified cy5-labeled cRNA was mixed with the same amount of cy3-
labeled cRNA. Label incorporation was checked on a NanoDrop spectro-
photometer. Hybridizations were performed with a dye-swap strategy on whole-
human-genome dual color 8� 60 K oligonucleotide microarrays (design 028004;
Agilent Technologies, Massy, France). Feature extraction software provided by
Agilent (version 10.7.3.1) was used to quantify the intensity of fluorescent images
and to apply a linear normalization to correct for artifacts caused by nonlinear rates
of dye incorporation and inconsistent relative fluorescence intensities between
some green and red dyes. All data were imported into Resolver software (Rosetta
Biosoftware, Boston, MA, USA) for database management, quality control,
computational recombination of dye-swaps and statistical analysis. Gene set
enrichment analysis was performed between the two groups of samples (treated
and non-treated by abexinostat).

Data availability. The microarray data related to this paper have been
submitted to the Array Express data repository at the European Bioinformatics
Institute (http://www.ebi.ac.uk/arrayexpress/) under the accession number
EMTAB-1180.

shRNA cloning and cell transduction. Blunt vector of pRRL-PGK-GFP
after digestion by XhoI and blunt inserts of pH1-shRNAp53 after XhoI/EcoRI
digestion of SuperRetro-pH1-shp53-PGK-Puro were ligated as previously
described.49,50

CD34þ cells cultured 5 days in serum-free medium with TPO (10 ng/ml) and
SCF (50 ng/ml) were transduced with lentiviral particles for 6 h followed by a second
transduction. Forty-eight hours after transduction, cells were sorted at day on the
expression of GFP and CD41 by flow cytometry, and then cultured in the presence
of TPO without or with abexinostat.
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Assessment of polyploidization. Cells were incubated for 2 h at 37 1C in
0.01 mM Hoechst 33342 (Sigma-Aldrich, St Quentin Fallavier, France) and then
stained for 30 min at 4 1C with a PE-conjugated anti-CD41a MoAb. Ploidy was
acquired on an InfIux cytometer (Becton Dickinson) and analysis was performed
using FlowJo software.

RT PCR and qRT-PCR. Total RNA was isolated using RNA/DNA/Protein
Purification Kit (Norgen Biotek Corp). Reverse transcription was performed
using SuperScript VILO cDNA Synthesis Kit (Life technologies) before PCR
amplification. qRT-PCRs were performed using an Applied Biosystems 7500
Real-Time PCR System with Power SYBR Green Master Mix (Life technologies)
using the manufacturer’s recommendations. Expression levels of genes (BAX,
CDKN1A (P21)) were measured relatively to HPRT. Primer sequences are listed
in Supplementary Table 1.
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