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Glucose restriction induces cell death in parental but
not in homeodomain-interacting protein kinase
2-depleted RKO colon cancer cells: molecular
mechanisms and implications for tumor therapy

A Garufi1, A Ricci2, D Trisciuoglio3, E Iorio2, G Carpinelli2, G Pistritto4, M Cirone5 and G D0Orazi*,1,6

Tumor cell tolerance to nutrient deprivation can be an important factor for tumor progression, and may depend on deregulation
of both oncogenes and oncosuppressor proteins. Homeodomain-interacting protein kinase 2 (HIPK2) is an oncosuppressor that,
following its activation by several cellular stress, induces cancer cell death via p53-dependent or -independent pathways. Here,
we used genetically matched human RKO colon cancer cells harboring wt-HIPK2 (HIPK2þ /þ ) or stable HIPK2 siRNA
interference (siHIPK2) to investigate in vitro whether HIPK2 influenced cell death in glucose restriction. We found that glucose
starvation induced cell death, mainly due to c-Jun NH2-terminal kinase activation, in HIPK2þ /þcells compared with siHIPK2
cells that did not die. 1H-nuclear magnetic resonance quantitative metabolic analyses showed a marked glycolytic activation in
siHIPK2 cells. However, treatment with glycolysis inhibitor 2-deoxy-D-glucose induced cell death only in HIPK2þ /þ cells but not
in siHIPK2 cells. Similarly, siGlut-1 interference did not re-establish siHIPK2 cell death under glucose restriction, whereas
marked cell death was reached only after zinc supplementation, a condition known to reactivate misfolded p53 and inhibit the
pseudohypoxic phenotype in this setting. Further siHIPK2 cell death was reached with zinc in combination with autophagy
inhibitor. We propose that the metabolic changes acquired by cells after HIPK2 silencing may contribute to induce resistance to
cell death in glucose restriction condition, and therefore be directly relevant for tumor progression. Moreover, elimination of
such a tolerance might serve as a new strategy for cancer therapy.
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Tumor cell proliferation and survival are basically maintained
by oxygen and nutrients, especially glucose, supplied by the
blood. For this reason, angiogenesis is considered closely
involved in tumorigenesis.1 Some tumor cells acquire
tolerance to glucose starvation (glu stv), which may depend
on hypoxia condition.2–4 Hypoxia-inducible factor 1 (HIF-1) is
a heterodimeric transcription factor with constitutive HIF-1b
subunit and the HIF-1a subunit stabilized by low intracellular
oxygen or genetic alteration. HIF-1 target genes that regulate
glucose metabolism include the glucose transporter-1
(Glut-1), as well as multiple enzymes required for glycolysis.5

Homeodomain-interacting protein kinase 2 (HIPK2) is a
corepressor protein that regulates the transcription of numer-
ous proteins involved in tumor progression and development.6

We previously reported that HIPK2 represses HIF-1a tran-
scription; thus, HIPK2 depletion induces a pseudohypoxic
phenotype with HIF-1a upregulation and angiogenesis
that results in increased tumor growth in vivo and in

chemoresistance.7–9 This finding parallels the overexpression
of HIF-1a in many human cancers, including colon, brain,
breast, and so on, which is associated with poor prognosis
and failure of tumor treatment.5 Hypoxia and HIF-1a have
been found to downregulate HIPK2 in a negative regulatory
loop,10,11 whereas zinc treatment has been shown to down-
regulate HIF-1a with restoration of HIPK2 activity.12–14

HIPK2 induces cell death by activating p53-dependent and -
independent pathways.9,15 HIPK2 activation by DNA damage
(for example, ionizing radiation, IR, UV light) or antitumor
drugs (for example, cisplatin, adryamicin, roscovitin) phos-
phorylates p53 at Ser46 with induction of p53 apoptotic
function.15–18 HIPK2 participates in the c-Jun NH2-terminal
kinase (JNK) activation and apoptosis in p53 null cells.19

Chronic HIPK2 depletion impairs p53 function by inducing p53
protein misfolding that can be reversed by zinc supplementa-
tion.20,21 P53 is a zinc-binding transcription factor that needs
proper folding for DNA binding and transactivating functions
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for oncosuppressor activity;22 it also has important roles in the
regulation of cellular metabolism in cancer cells.23 Loss of p53
enhances aerobic glycolysis, resulting in the development of
more aggressive tumors,24 and enhances oxidative pentose
phosphate pathway (PPP) flux through p53 protein binding to
glucose-6-phosphate dehydrogenase (G6PD), the first and
rate-limiting enzyme of the PPP that has an important role in
biosynthesis.25 Interestingly, the inhibition of G6PD by p53 is
independent of transcription and is a cytoplasmic, not nuclear,
function of p53, probably attributed to the native conformation
of p53.25

Autophagy is a degradative process through which
damaged organelles and misfolded proteins are targeted for
disruption via the lysosomes. In cancer, autophagy may
contribute to tumor cell survival. As cancer cells experience
higher metabolic demands than normal cells, due to their
altered glycolytic metabolism, they may depend more heavily
on autophagy for survival. Therefore, inhibition of autophagy
may enhance the therapeutic benefits of various cancer
therapies.26

In the current study, we investigated the effect of HIPK2
depletion in cancer cell response to glucose restriction. HIPK2
silencing impaired RKO colon cancer cell death under limiting
glucose availability or under inhibition of glucose metabolism
by 2-deoxy-D-glucose (2-DG), compared with HIPK2-profi-
cient cells that instead underwent marked cell death. Zinc
supplementation reduced HIPK2 siRNA interference
(siHIPK2) cell resistance to glucose deprivation inducing cell
death. Moreover, blocking the glu stv-induced autophagy
increased HIPK2þ /þ cell death and re-established siHIPK2
cell death. These findings could be directly relevant to the
documented role of HIPK2 as a tumor suppressor, because
absence of HIPK2 might confer to tumor cells the metabolic
adaptability necessary to survive longer in adverse
environment.

Results

1H-NMR analyses detected different metabolic profiles in
HIPK2-proficient compared with HIPK2-depleted cancer
cells. To evaluate the effect of HIPK2 depletion on cellular
bioenergetics, we compared metabolic measurements of
human colorectal carcinoma-derived RKO cells that retain
HIPK2 (HIPK2þ /þ ) with their isogenic derivatives in which
the HIPK2 gene had be stably knocked down by siRNA
interference (siHIPK2, with HIPK2 mRNA reduction of about
70%).27 The siHIPK2 cell line constitutes a bona fide model
of tumor progression.7,8 Seven independent (biological)
replicates of HIPK2þ /þ and siHIPK2 cells were grown under
the same optimal conditions. One-dimensional 1H-nuclear
magnetic resonance (1H-NMR) spectra of metabolic extracts
were measured and used in the qualitative and quantitative
analysis. Representative one-dimensional 1H-NMR spectra
of aqueous extracts is shown in Figure 1a with peak
assignments. The qualitative analysis of the major variances
in the spectra was performed directly by using principal
component analysis (PCA), an unsupervised method
allowing orthogonal decomposition of variance associated
with the analyzed metabolites.28 As shown in Figure 1b,
score plot of the first two principal components, PC1 and

PC2, of intracellular metabolites, revealed a clear difference
between the two cell lines with a confidence level of 80%. In
particular, phosphocholine (PCho, 3.22 p.p.m.), myo-inositol
(myo-ino 4.05 p.p.m.), lactate (Lac, 1.33 p.p.m.), and total
creatine (tCr 3.04 p.p.m.) were responsible for segregation in
two separate cluster in PC1 and PC2 score plot, as shown in
2D loading plot (Figure 1c). Quantitative NMR analyses
showed intracellular higher levels in siHIPK2 with respect to
HIPK2þ /þ cells of relevant metabolites involved in glyco-
lysis, tricarboxylic acid (TCA) cycle, and phosphatidylcholine
metabolism (Figure 1d). In particular, siHIPK2 cells showed
significant increase of choline-containing metabolites (tCho,
P¼ 0.002), glycine (gly; P¼ 0.006), and intracellular Lac
(P¼ 0.015) and alanine (Ala; P¼ 0.007), compared with
HIPK2þ /þ cells (Figure 1d). These altered metabolic profiles
might be potential novel indicators of tumor progression, as
reported.29 Moreover, glutamate (P¼ 0.004) and glutamine
(P¼ 0.007) involved in TCA cycle increased in siHIPK2 cells,
while significant decrease (P¼ 0.007) in creatine plus
phosphocreatine (tCr) levels were observed in siHIPK2
compared with HIPK2þ /þ cells (Figure 1d). Altogether,
these data show that chronic HIPK2 depletion strongly
affected metabolic profiles of RKO cells, and in particular,
the significant increase in Lac, Ala, and gly suggested a
marked glycolytic activation.

Silencing of HIPK2 protects tumor cells from glu stv-
induced cell death. Glycolytic metabolism promotes
proliferation of cancer cells, but it also protects them from
cell death induced by growth factor withdrawal or nutrient
starvation;30 therefore, we challenged HIPK2þ /þ and
siHIPK2 cells with glucose restriction. Cells were grown with
normal glucose concentration (25 mM, mock) or in media
lacking glucose (glu stv). Cell viability showed time-depen-
dent increase of cell death in HIPK2þ /þ cells, whereas
HIPK2 knockdown significantly protected tumor cells from glu
stv-induced cell death (Po0.01; Figure 2a, left panels); as
also evidenced macroscopically (Figure 2b, upper panel) and
microscopically (Figure 2b, lower panel), where evident signs
of cell death were present in HIPK2þ /þ cells after 24 h
starvation (1d stv), while siHIPK2 cells appeared still alive
after 48 h starvation (2d stv). Cell proliferation analysis
showed reduced cell growth of glucose-starved HIPK2þ /þ

cells, in agreement with the cell death induction (Figure 2a,
upper/right panel); on the other hand, although siHIPK2 cells
did not die in glucose-free condition, they underwent growth
arrest (Figure 2a, lower/right panel). Cell death was obtained
in HIPK2þ /þ compared with siHIPK2 cells also with reduced
glucose concentration (2.5 mM, 1 : 10). Extension of the glu
stv to 2 days further confirmed the HIPK2 requirement for
starvation-induced cell death: substantial numbers of alive
cells were observed in the siHIPK2 cells whereas in the
HIPK2þ /þ ones they appeared mostly dead (Figure 2b),
suggesting a greater ability of siHIPK2 cells to deal with
glucose deprivation. Thus, HIPK2 depletion induced marked
lactate production under normal culture condition that did not
change during glu stv, compared with HIPK2þ /þ cells where
glu stv significantly decreased lactate production (Figure 2c).

Next, we performed Annexin V/propidium iodide (PI)
staining that allows the discrimination of viable cells (Annexin
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V� /PI� ), early apoptotic (Annexin Vþ /PI� ), and late
apoptotic or necrotic cells (Annexin Vþ /PIþ ). As shown in
Figures 2d and e, 24 h glu stv increased the percentage of
both early (about 7% compared with mock) and late apoptotic
or necrotic events (about 36% compared with mock) in
HIPK2þ /þ cells, whereas it did not induce apoptosis or
necrotic cell death in siHIPK2 cells. In agreement, PARP
cleavage was observed only in HIPK2þ /þ cells 24 h after glu
stv, compared with siHIPK2 cells (Figure 2f). Of note,
replenishment with full medium, which might mimic angiogen-
esis in vivo or increased dietary glucose intake, led to a time-
dependent increase of siHIPK2 but also of HIPK2þ /þ cell
number, with a slow reduction of HIPK2þ /þ cell death
(Supplementary Figure S1). These latter data suggest that
siHIPK2 cells and also the few remaining HIPK2þ /þ ones
were still viable after, respectively, 48 and 24 h glu stv and
capable of resuming cell proliferation as soon as nutrient
supply was provided. Altogether, these results demonstrate
that HIPK2 silencing protected RKO colon cancer cells from
glu stv-induced cell death.

JNK activity is engaged in death induced by glucose
deprivation. To underline the role of HIPK2 in glu stv-
induced cell death, we attempted to analyze pathways known
to be modified by HIPK2. Glucose deprivation has been
shown to phosphorylate p53 at Ser46, which is a target of

HIPK2 kinase activity,16,17 for apoptotic cell death.31 We
found that Ser46 was slightly phosphorylated in HIPK2þ /þ

cells after 24 h glucose restriction and absent in siHIPK2 cells
(Supplementary Figure S2), indicative of a late involvement
of HIPK2/p53Ser46 in cell death in this setting. HIPK2 has
been shown to induce JNK phosphorylation to trigger
apoptosis.19 Thus, JNK phosphorylation in HIPK2þ /þ after
16 and 24 h glu stv was markedly impaired in siHIPK2 cells
(Figure 3a); JNK activity was monitored by c-Jun phosphor-
ylation that was indeed absent in siHIPK2 cells although
showed reduced c-Jun expression level (Figure 3a). The role
of JNK in glu stv-induced cell death was evaluated by stable
transfection of the JNK1-APF mutant (DN-JNK1)32 in RKO-
HIPK2þ /þ cells (Figure 3b). As shown in Figure 3c, over-
expression of the inactivatable DN-JNK1 mutant in HIPK2þ /

þ cells markedly abolished glu stv-induced c-Jun phosphor-
ylation and impaired cell death (Figure 3d), as also
evidenced microscopically (Figure 3e).

HIPK2 is an unstable protein that undergoes degradative
ubiquitination in basal condition.9,15 After induction, HIPK2 is
temporarily stabilized and its activity may be regulated by
caspase-mediated removal of an autoinhibitory domain,
resulting in its hyperactivation.33 Here, we found a slight
induction of HIPK2 expression level in HIPK2þ /þ cells after
8 h glu stv, which decreased in the subsequent time points,
suggestive of HIPK2 activation,9,27,33 while siHIPK2 cells

a b

ppm

siHIPK2

HIPK2+/+

PC1

PC2

c

PC1

PC2

20

40

60 HIPK2+/+

siHIPK2

d

0

n
m

o
l/1

06  
ce

lls

Figure 1 1H-NMR analyses of different metabolic profiles in HIPK2-proficient (HIPK2þ /þ ) compared with HIPK2-depleted (siHIPK2) cancer cells. (a) Representative
1H-NMR spectra (400 MHz) of aqueous extract from HIPK2þ /þ and siHIPK2 cancer cells. Peak assignments: myo-ino; tau (taurine); tCho (total choline-containing
metabolites) resonance including choline (Cho), phosphocholine (PCho); glycerophosphocholine (GPCho); tCr (total creatine: creatine plus phosphocreatine); GS
(glutathione); Glt (glutamate); Glx (glutamateþ glutamineþ glutathione); Acetate; alanine (Ala); and lactate (Lac). p.p.m., parts per million. (b) Score plot of the first two
principal components (PC1 and PC2) in HIPK2þ /þ (dotted circle) and siHIPK2 (dashed circle) cells. Level of confident¼ 80%. (c) 2D loading plot showing the critical
metabolites for different segregation between the two cell lines. In particular, PCho, 3.22 p.p.m.; myo-ino, 4.05 p.p.m.; Lac, 1.33 p.p.m.; and tCr, 3.04 p.p.m. were responsible
for segregation in two separate cluster in PC1 versus PC2 score plot. (d) Intracellular concentrations (nmol/106 cells) of 1H-NMR detectable metabolites in HIPK2þ /þ and
siHIPK2 cells. Significant increases in: Lac, P¼ 0.015; Ala, P¼ 0.007; glycine (gly, P¼ 0.006; tCho, P¼ 0.002; Glt, P¼ 0.004; and glutamine, P¼ 0.007. Significant
decrease intCr levels in siHIPK2 compared with HIPK2þ /þ cells (P¼ 0.007)
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were negative (Supplementary Figure S2). In addition,
chromatin immunoprecipitation (ChIP) showed that the bind-
ing of HIPK2 on HIF-1a promoter, as previously shown,7 was
strongly increased after 8 h of glu stv (Figure 3f). Altogether,
these results demonstrate that JNK activation is one of the
signaling pathway involved in triggering cell death in glucose-
starving RKO-HIPK2þ /þ cells that was abrogated by HIPK2
depletion.

Targeting glycolysis by 2-DG or siGlut-1 does not induce
siHIPK2 cell death under glu stv. Targeting aerobic
glycolysis is a very promising approach as anticancer
treatment. Among the glycolysis inhibitor in preclinical and
clinical development is the inactive analog of glucose and
hexokinase inhibitor, 2-DG.34,35 Therefore, we addressed the
question of whether inhibition of glycolysis could re-establish
glucose-starving siHIPK2 cell death. Treatment with 2-DG

40

60

80

100
Mock
glu stvHIPK2+/+ HIPK2+/+

80

120

Mock
1d

1:10 1d stv

H
IP

K
2+/

+

0

20ce
ll 

d
ea

th
 (%

)
ce

ll 
d

ea
th

 (%
)

20

40

60

80

100

siHIPK2

0

40

n
o

 c
el

ls
 x

 1
04

40

80

120
siHIPK2

si
H

IP
K

2

Mock 2d
1:10

2d stv

Mock
1d

1:10

HIPK2+/+

1d stv 2d stv

Mock glu stv

0
0 6 18 24

0

n
o

 c
el

ls
 x

 1
04

241860h: h:

60 Annexin V(+) PI (+)

Annexin V(+) PI (-)

siHIPK2

H
IP

K
2+/

+
si

H
IP

K
2

Annexin V-FITC staining

P
I s

ta
in

in
g

0

15

30

45

glu stv - + - +

HIPK2+/+ siHIPK2

%
 d

yi
n

g
 c

el
ls

* ns

15

20

*

0

5

10

15

glu stv

L
ac

ta
te

 p
ro

d
u

ct
io

n
(p

m
o

l/m
l/1

06  
ce

lls
)

- + - +

HIPK2+/+ siHIPK2

a b

c d e

0 8 16 24 0 8 16 24h:

�-actin

PARP cleav

HIPK2+/+ siHIPK2

glu stvf

Figure 2 siHIPK2 cells show resistance to glu stv-induced cell death. (a) HIPK2þ /þ and siHIPK2 subconfluent cells were seeded and the day after washed with PBS
before culturing in glucose-free medium (glu stv). Cell death (left panels) and proliferation (right panels) were analyzed by trypan blue staining after 6, 18, and 24 h treatment.
The result is the mean of three independent experiments performed in triplicate ±S.D. (b) HIPK2þ /þ and siHIPK2 cells were cultured in glucose-free or low glucose
(1 : 10 stv) media for 1 or 2 days (1d, 2d stv) after which live cell images were taken (bottom panel), fixed. and stained with crystal violet (upper panel). A representative result of
three experiments is shown. (c) Lactate production into medium of HIPK2þ /þ and siHIPK2 cultured for 16 h in glucose-free (glu stv) condition. Results are the mean of two
independent experiments performed in quadruplicate, ±S.D. *, the difference were significant at Po0.05. (d) Cytofluorimetric dot plot analysis of the Annexin V-FITC versus
propidium iodide (PI) staining performed in HIPK2þ /þ and siHIPK2 cells after 24 h of growth in complete medium (mock) or glucose-free medium (glu stv). A representative
experiment out of three performed with similar results is shown. Annexin Vþ /PI� - and Annexin Vþ /PIþ -stained cells were considered early apoptotic and late apoptotic or
necrotic cells, respectively. (e) Percentage of Annexin Vþ /PI� - and Annexin Vþ /PIþ -stained cells was calculated by cytofluorimetric analysis shown in (d) using CellQuest
Software. (f) Equal amounts of total cell extracts from HIPK2þ /þ and siHIPK2 cells left untreated or treated with glucose-free medium (glu stv) for the indicated times were
analyzed by western immunoblotting to assess PARP cleavage. Anti-b-actin was used as protein loading control
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ranging between 4 and 12 mM for 48 h induced marked
HIPK2þ /þ cell death, compared with siHIPK2 cells that did
not die (Figure 4a), as also evidenced microscopically
(Figure 4b). Replenishment of cell cultures with full medium
increased cell number in both cell lines (Figures 4b
and c þ rec), although it was more marked in siHIPK2 cells
(Figure 4c þ rec). Cell proliferation was also assessed by
western immunoblotting of cyclin B1, which, in mammalian
cells, has a critical role in the progression through mitosis.36

As shown in Figure 4c: lower panel, cyclin B1 almost
completely disappeared after 2-DG treatment in both cell
lines; however, replenishment of cell cultures with full
medium (þ rec) efficiently restored cyclin B1 expression in
both cell lines. These data indicate that HIPK2þ /þ cells were
more sensitive to cell death induced by glicolysis inhibition
compared with siHIPK2 cells. However, both cell lines were
capable of resuming cells’ proliferation after glucose supply
replenishment.

Next, we attempted to evaluate Glut-1 expression, as
increased Glut-1 and likely of glycolytic flux enhances, rather

than impairs, cell tolerance to low glucose availability.37 We
found Glut-1 upregulation in siHIPK2 cells compared with
HIPK2þ /þ cells both at mRNA and protein levels (Figure 4d),
which was somehow expected, given that Glut-1 is both
transcriptionally repressed by p5338 and activated by HIF-1,5

being both molecules, respectively, inhibited and activated by
HIPK2 depletion.7,20 Then, we inhibited Glut-1 expression by
transient transfection with specific siRNA (Figure 3e: inset,
about 60% Glut1 mRNA reduction compared with control).
However, Glut-1 silencing was not sufficient to induce
siHIPK2 cell death under glucose deprivation (Figure 4e),
suggesting that additional pathway other than Glut-1 upregu-
lation might be involved in resistance to metabolic stress-
induced cell death.

Zinc supplementation induces cell death in glucose-
starved siHIPK2 cells. Next, we attempted to modify the
siHIPK2 cell response to glucose deprivation by using zinc
supplementation, which inhibits the HIF-1 activity and
reverses p53 misfolding.13,20,21 Zinc treatment greatly
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Figure 3 JNK activity is involved in cell death induced by glucose deprivation. (a) Equal amount of total cell extracts from HIPK2þ /þ and siHIPK2 cells cultured in
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control. Additional controls included immunoprecipitation performed with nonspecific immunoglobulins (IgG)
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decreased the level of lactate production by glucose-starved
siHIPK2 cells (Figure 5a) that correlated with significant
increase of siHIPK2 cell death (Figure 5b). Similar siHIPK2
cell death was obtained with 2-DG in combination with zinc,
whereas zinc treatment alone had almost no effect on cell
viability (Figure 5b). Annexin V/PI staining confirmed that
zinc supplementation in condition of glu stv induced about
55% of late apoptotic/necrotic cells (Annexin Vþ , PIþ )
(Figures 5c and d). Notably, no induction of early apoptosis
(Annexin Vþ , PI� ) was observed in the same experimental
condition, and o10% of cell death was evidenced by
Annexin V staining in both glucose-starved or zinc-treated
siHIPK2 cells (Figure 5d). These data suggest that zinc
treatment could re-establish cell death response in glucose-
starving siHIPK2 cells.

Autophagy contributes to cell resistance to nutrient
deprivation. Autophagy contributes to the tolerance to
nutrient deprivation in colorectal cancer cells.39 We eval-
uated the expression of microtubule-associated protein light
chain 3 (LC3) protein that, after conversion from LC3-I to its
autophagosome membrane-associated lipidated form LC3-II,
is considered a cellular readout of autophagy.40 Figure 6a
shows LC3 induction upon glu stv in both cell lines; treatment

with early inhibitor of autophagosome formation 3-methyla-
denine (3-MA)40 did not dramatically reduce glu stv-induced
LC3; on the contrary, treatment with inhibitor of autophagic
protein degradation, cloroquine (CQ),40 strongly increased
LC3-II expression under glu stv compared with CQ treatment
alone, in both cell lines (Figure 6a), indicating the absence of
defective autophagy. Autophagy is a key function of the
lysosomal compartment41 and CQ has been shown to disrupt
lysosomal structure and function preventing effective auto-
phagy degradation, leading to the accumulation of ineffective
autophagosomes and cell death in cells reliant on autophagy
for survival.42 We found that CQ significantly increased cell
death in glucose-starving siHIPK2 cells (Figure 6b) and
slightly increased also glucose-starving HIPK2þ /þ cell
death, providing evidence that autophagy can contribute to
tumor cell survival in this setting. Furthermore, Annexin V/PI
staining showed that CQ increased the percentage of
glucose-starving HIPK2þ /þ late apoptotic/necrotic cell death
that was not further increased by zinc supplementation
(Figure 6c); on the other hand, the lack of cell death in
glucose-starving siHIPK2 cells was reversed by adding CQ
or zinc single treatments, and further increased by combining
CQ and zinc supplementation (Figure 6c). These results
suggest that autophagy is induced by glu stv, and that its
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and the day after untreated (� ) or treated with 2-DG at 4, 8 and 12 mM. Forty-eight hours later, trypan blue staining was performed. The result is the mean of three
independent experiments performed in triplicate ±S.D. (b) HIPK2þ /þ and siHIPK2 were treated with 12 mM 2-DG for 48 h, after which live cell images were taken, or fresh
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inhibition slightly increased cell death in sensitive RKOþ /þ

while re-established cell death after glu stv particularly in
resistant siHIPK2 cells that could be further improved by zinc
supplementation.

We finally analyzed JNK phosphorylation and found that
autophagy inhibition did not reverse JNK inhibition in siHIPK2
cells (Figure 7a), suggesting the modulation of additional
pathways leading to cell death. In previous studies, we found
that HIPK2 depletion induces constitutive Akt phosphory-
lation,43 which contributes to cell death resistance. Akt
regulates many biological processes, such as proliferation,
apoptosis and growth, and is involved in tumor progression.44

Here, we found that Akt phosphorylation was markedly
inhibited by CQ treatment in glucose-starving siHIPK2 cells

(Figure 7b). Interestingly, also zinc supplementation reduced
(p)-Akt in glucose-starving siHIPK2 cells (Figure 7b). These
results indicate that autophagy is activated by glu stv in this
setting and that autophagy inhibition abrogated signaling
pathway of apoptosis resistance such as Akt that correlated
with increased cell death.

Discussion

In this study we show that HIPK2 depletion changed RKO
cancer cell response to glucose restriction; thus, whereas
HIPK2þ /þ cells underwent death HIPK2-depleted cells did
not. What was the mechanism of such resistance to metabolic
stress? Solid tumors are dependent on glucose, but are
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generally glucose-deprived owing to poor vascularization.
Therefore, cancer cells undergo metabolic reprogramming to
better cope with nutrient deprivation.4,45 A distinct trait of the
cancer metabolism is the unscheduled activation of glycolytic
enzymes in normoxic conditions, indicated by increased
cellular glucose uptake, hyperglycolysis, and lactate produc-
tion.46 Coupling of 1H-NMR metabolic analyses to biochem-
ical experiments revealed that HIPK2 depletion led to
increased lactate production and glycolytic metabolism that
likely contributed to adaptation to hypoglycemic environment.

HIPK2 is an oncosuppressor and a corepressor molecule
that can stimulate gene expression upon phosphorylation of
several transcription factors including p53,6,16,17 and repress
transcription of several genes involved in development,
apoptosis, and tumor progression such as HIF-1a.7 HIF-1
enhances glycolysis by inducing the expression of genes
encoding glycolytic enzymes and glucose transporters, such
as Glut-1,5 which was indeed increased in siHIPK2 cells.
Similarly, p53 has important roles in the regulation of
glycolysis and oxidative phosphorylation in cancer cells.23–25

Loss of p53 enhances aerobic glycolysis, resulting in the
development of a more aggressive tumor.24 Given the
multiplicity of molecules modulated by HIPK2, one cannot
assume that only one pathway might be involved. One of the
mechanism involved in late (24 h) apoptosis/necrosis upon glu
stv was p53Ser46 phosphorylation that was abolished in
siHIPK2 cells. At earlier time point (16 h), JNK was activated in
HIPK2þ /þ cells upon glucose restriction and its activity was
markedly impaired by HIPK2 depletion. JNK1 has important
roles in triggering apoptosis in response to cellular stress, and
its activation by HIPK2 has been previously reported.19

However, the role of HIPK2 activation in JNK activation upon
glucose restriction needs to be further elucidated because
several signaling kinases may regulate survival during glu
stv.30 To render cancer cells sensitive to glucose depletion
may potentially provide an effective strategy for cancer
intervention. However, Glut-1 silencing or targeting glucose
metabolism with 2-DG did not induce siHIPK2 cell death in this
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setting, suggesting the activation of additional pathways.
Zinc supplementation inhibited siHIPK2 lactate production
that correlated with increased cell death, likely by
reversing p53 misfolding20,21,23,25 and by inhibiting HIF-1
activity.13

Cancer cells encountering limited nutrient supplies in the
growing tumor may exploit autophagy for survival; thus,
autophagy contributes to the tolerance to nutrient deprivation
in colorectal cancer cells.39 In agreement, autophagy was
induced upon glu stv in both HIPK2þ /þ and siHIPK2 cells,
and blocking autophagy increased glucose-starving HIPK2þ /þ

cell death and re-established siHIPK2 cell death. What was
the mechanism that re-established glucose-starving siHIPK2
cell death upon autophagy inhibition? Autophagy inhibition
markedly impaired Akt phosphorylation in glucose-starving
siHIPK2 cells, which could partly support re-establishment of
siHIPK2 cell sensitivity to metabolic stress-induced cell death.
The inhibition of autophagy has been shown to enhance the
therapeutic benefits of various cancer therapies; however,
strategies to induce autophagic cell death (that is, metformin)
have also been proposed to inhibit tumor progression;47,48

therefore, modulation of autophagy for cancer therapy is still
somehow controversial.26

In cancer, the importance of HIPK2 has been elucidated by
HIPK2 knock-out mice that showed increased sensitivity to
develop skin cancer after treatment with carcinogens.49

Moreover, loss of HIPK2 heterozigosity occurs in radiation-
induced tumors in mouse cells50 and in human papillary
thyroid cancers,51 underlining the important activity of HIPK2
as tumor suppressor. HIPK2 may be inhibited in tumors by
several mechanisms such as hypoxia-induced protein degra-
dation, gene mutation, or oncogene-mediated cytoplasmic
localization.9 Although glucose deprivation has been shown to
activate metabolic and signaling pathways inducing cell
death,52 molecular alterations leading to HIPK2 impairment
could counteract this effect increasing tumor resistance to
metabolic stress. Glucose restriction can be obtained by
reduced angiogenesis or by low carbohydrate diet that indeed
has been shown to slow tumor growth.53 On the contrary,
higher dietary glycemic load associates with an increased risk
of recurrence and mortality in stage III colon cancer patients.54

Thus, we found here that both cell lines were still capable of
resuming cell proliferation as soon as nutrient supply was
provided, in line with the concept that tumor cells develop
tolerance to nutrient deprivation that can therefore contribute
to tumor progression.2 More recently, glucose restriction has
been shown to reduce mutant p53 pro-oncogenic function,55

whereas supplemental zinc reactivates mutant p53.56 There-
fore, dietetic intervention aimed at lowering the glucose intake
along with supplemental zinc could be an efficient strategy to
increase cell death in tumors with HIPK2 or p53 impairment. In
addition, HIPK2 transduction might be a useful prospective as
potential targeted cancer gene therapy approach to circum-
vent resistance to cell death.57,58

Materials and Methods
Cell culture and treatments. Human RKO colon cancer (carrying wtp53;
HIPK2þ /þ ), the RKO stably interfered for HIPK2 (siHIPK2),27 and the human
lung cancer H1299 (p53 null) cells were routinely maintained in DMEM (Life
Technology-Invitrogen) medium containing 10% heat-inactivated fetal bovine

serum (Life Technology-Invitrogen, Carlsbad, CA, USA), 100 units/ml penicillin/
streptomycin, and glutamine, in 5% CO2 humidified incubator at 37 1C. For glu stv,
cells were transferred to corresponding medium without glucose. Glucose-free
DMEM was supplemented with full medium to achieve the desired concentration of
glucose (full DMEM contains 25 mM glucose and was diluted in glucose-free
DMEM 10-fold to achieve concentration of 2.5 mM).

Chemicals. ZnCl2 was dissolved in dH2O2 and used at 100mM; 3-MA was
dissolved in dH2O2 and used at 5 mM; 2-DG was dissolved in DMSO and used at
concentrations ranging between 4 and 12 mM; CQ was dissolved in dH2O2 and
used at 25mM. All chemicals were from Sigma-Aldrich (St. Louis, MO, USA).
ZnCl2, 3-MA, and CQ were added to culture media1 h before treatments.

Measurement of cell proliferation and viability. Cells numbers were
determined in duplicate at different time points. Cell counts were performed using
a hemocytometer by adding trypan blue to equal volume of cell suspension. The
percentage of cell viability, as blue/total cells, was assayed by scoring 200 cells
per well three times. Bright field images were taken in a Nikon Eclipse TS100
microscope equipped with a Nikon ELWD camera (Nikon Instruments Europe BV,
Amsterdam, Netherlands). For survival assay, 2� 105 cells were plated on 60-mm
dishes and 24 h later treated with glucose-free medium. Death-resistant cells were
stained with crystal violet 24–48 h later.

Annexin V/PI staining. Apoptosis was quantified by cytofluorimetric analysis
staining cells simultaneously with FITC-Annexin V and the non-vital dye PI
(Immunological Sciences, Rome, Italy), following the manufacturer’s instruction. At
the end of incubation with the respective reagents, samples were analyzed with a
FACScan instrument (Becton Dickinson Europe Holdings SAS - Le Pont De Claix,
France). About 30 000 events were acquired and gated using forward scatter and
side scatter to exclude cell debris. Bivariate analysis allows the discrimination of
intact cells (FITC�PI� ), early apoptotic (FITCþPI� ), and late apoptotic or necrotic
cells (FITCþPIþ ). The percentage of Annexin Vþ cells relatives to the different
analyses was calculated using CellQuest software (Becton Dickinson). FITC-
conjugated Annexin V/PI staining (Immunological Sciences) was also visualized by
Olympus BX53 fluorescence microscope (Olympus Italia Srl, Milan, Italy).

Measurement of lactate. Cells were seeded onto 35-mm tissue-culture
dishes, and 24 h later washed three times in PBS before adding glucose-free
media for 16 h. Lactate secretion of triplicates were measured by using the Lactate
Assay Kit II (BioVision Research Products, Mountain View, CA, USA), according to
the manufacturer’s instruction.

RNA isolation and RT-PCR analysis. Cells were harvested in TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA) and total RNA was isolated following the
manufacturer’s instructions. cDNA was synthesized from 2mg of total RNA with
MuLV reverse transcriptase kit (Applied Biosystems, Life-Technology-Invitrogen).
Semiquantitative reverse transcription (RT)-PCR was carried out by using Hot-
Master Taq polymerase (Eppendorf Srl, Milano, Italy) with 2 ml cDNA reaction and
genes-specific oligonucleotides under conditions of linear amplification. The
housekeeping b-actin was used as internal standard.

Western blotting. Total cell extracts were prepared by incubation in lysis
buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, pH 8.0, 150 mM KCl,
1 mM dithiothreitol, 1% Nonidet P-40) and a mix of protease and phosphatase
inhibitors (Sigma-Aldrich Chemical Company, Sigma-Aldrich). Samples were
denatured in SDS sample buffer. Total proteins were separated by loading 20–
60mg of total cell lysates on denaturing 10% SDS-PAGE and transferred to a
polyvinylidene difluoride membrane (Merck Millipore, Billerica, MA, USA).
Membranes were blocked with 5% nonfat dry milk in PBS and incubated with
primary antibodies that recognize: cyclin B1, Glut-1 (H-43), p53 (DO-1; all from
Santa Cruz Biotechnology, Santa Cruz, CA, USA), PARP (cleavage site-214/215,
Millipore), LC3B (Sigma-Aldrich), HA (Roche S.p.A, Milan, Italy), (p)JNK, JNK,
(p)c-Jun, c-Jun, (p)Ser46, (p)-Akt (Ser473), tot-Akt, (all from Cell Signaling
Technologies, Danvers, MA, USA), HIPK2 (kindly provided by ML Schmitz, Justus-
Liebig University, Giessen, Germany), b-actin (Calbiochem, San Diego, CA, USA),
and tubulin (Immunological Sciences). Secondary antibody conjugated to
horseradish peroxidise (Bio-Rad Laboratories, Hercules, CA, USA) was used to
detect primary antibodies, and enzymatic signals were visualized by chemolumi-
nescence (ECL kit, Amersham Biosciences, Freiburg, Germany).
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Transfection and plasmids. Cells were transfected by using the
LipofectaminePlus method (Invitrogen), according to the manufacturer’s specifica-
tions. The amount of plasmid DNA was equalized in each sample by
supplementing with empty vector, and transfection efficiency was visualized with
the use of a co-transfected GFP expression vector. For stable transfection,
4� 105 RKO cells were transfected with the nonphosphorylatable (competitive
inhibitor) HA-JNK1-APF (dominant negative, DN-JNK1)31 (kindly provided by Lynn
E Heasley, University of Colorado, Aurora, CO). Forty-eight hours after
transfection, cells underwent selection with geneticin G418 (1 mg/ml). G418-
resistant cells were pooled as mixed population 2 weeks later.

siRNA interference. Cells were plated at semiconfluence in 35-mm dishes
the day before transfection. Control-siRNA and siGlut-1 (Dharmacon, Thermo-
Scientific, Fisher Scientific SAS, Illkirch Cedex, France) were transfected overnight
using LipofectaminePlus reagent (Invitrogen).

ChIP assay. H1299 cells were plated at subconfluence in 150-mm petridishes.
The day after plating, cells were washed in PBS three times and glucose-free
medium was added for 8 h. Protein complexes were cross-linked to DNA in living
cells by adding formaldehyde directly to the cell vulture medium at 1% final
concentration, essentially as described.7 Chromatin extracts containing DNA
fragments with an average size of 500 bp were incubated overnight at 4 1C with
milk shaking using rabbit polyclonal anti-HIPK2 (H-55, Santa Cruz Biotechnology)
antibody. Before use, protein G (Pierce, Thermo-Scientific, Fisher Scientific SAS)
was blocked with 1 mg/ml sheared herring sperm DNA and 1mg/ml BSA for 3 h at
4 1C, and then incubated with chromatin and antibodies for 2 h at 4 1C. PCR was
performed with HOT-MASTER Taq (Eppendorf) using 2 ml of immuniprecipitated
DNA and promoter-specific primers for human HIF-1a promoter. Immunoprecipita-
tion with nonspecific immunoglobulins (IgG; Santa Cruz Biotechnology) was
performed as negative controls. The amount of precipitated chromatin measured
in each PCR was normalized with the amount of chromatin present in the input of
each immunoprecipitation. PCR products were run on a 2% agarose gel and
visualized by ethidium bromide staining using UV light.

Cell extracts in aqueous phase. Cells grown to 60–70% confluence were
trypsinized 24 h after culture medium change, counted, and assessed for viability
(80–90%) and membrane integrity by trypan blue staining. Cells (3� 106 cells per
sample) were washed twice with ice-cold physiological saline solution, resuspended
in 0.5 ml ice-cold twice-distilled water, and aqueous extracts were prepared in
EtOH : H2O (70 : 30, v/v), as previously described.56 Samples were ultrasonicated
at 20 kHz with an exponential probe, 8mm peak-to-peak by a MSE ultrasonic
disintegrator Mk2 (Crawley, Sussex, UK) and centrifuged at 14 000� g for 30 min.
Supernatants were lyophilized twice in a RVT 4104 Savant lyophilizer (Mildford,
Main, MA, USA), and the residue diluted in 0.7 ml deuterium oxide (Sigma-Aldrich,
Milan, Italy) containing 0.1 mM 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium
salt (TSP) as internal standard (Merck & Co., Montreal, QC, Canada).

High-resolution NMR spectroscopy. High-resolution NMR experiments
(25 1C) were performed at 400 MHz (Bruker AVANCE spectrometer, Bruker
GmbH, Karlsruhe, Germany). 1H-MRS spectra of cell extracts were obtained using
acquisition pulses, water presaturation, data processing, and data analysis, as
previously described.59 Quantification of individual metabolites was obtained from
peak areas using correction factors determined by experiments at the equilibrium
of magnetization (901 pulses, 30.00 s interpulse delay). Metabolite quantification
was expressed as nanomoles and normalized to the number of extracted cells.

Statistical analysis. PCA were performed on AMIX software (Bruker
GmbH). The spectral region between 4.7 and 0.5 p.p.m. of each NMR spectrum
was binned in 21 variable size buckets corresponding to known metabolites. The
rows (samples) of the data matrix were scaled to reference regions (TSP, 0.1 mM
in 700ml sample). The columns (variables) were not scaled. Confidence level (T2
Hotelling ellipses were calculated to 80%). Data were analyzed using Excel
software. Statistical significance of differences was determined by Student t-test
(as specified). Differences were considered significant at Po0.05.

All experiment unless indicated were performed at least three times. All
experimental results were expressed as the arithmetic mean, and S.D. of
measurements was shown. Student’s t-test was used for statistical significance of
the differences between treatment groups. Statistical analysis was performed using
analysis of variance at 5% (Po0.05) or 1% (Po0.01).
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