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Deciphering the signaling networks underlying
simvastatin-induced apoptosis in human cancer cells:
evidence for non-canonical activation of RhoA and
Rac1 GTPases

Y Zhu1,2, PJ Casey3,4, AP Kumar5,6,7,8 and S Pervaiz*,1,2,4,6,8,9

Although statins are known to inhibit proliferation and induce death in a number of cancer cell types, the mechanisms through
which downregulation of the mevalonate (MVA) pathway activates death signaling remain poorly understood. Here we set out to
unravel the signaling networks downstream of the MVA pathway that mediate the death-inducing activity of simvastatin.
Consistent with previous reports, exogenously added geranylgeranylpyrophosphate, but not farnesylpyrophosphate, prevented
simvastatin’s growth-inhibitory effect, thereby suggesting the involvement of geranylgeranylated proteins such as Rho GTPases
in the anticancer activity of simvastatin. Indeed, simvastatin treatment led to increased levels of unprenylated Ras homolog gene
family, member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42). Intriguingly,
instead of inhibiting the functions of Rho GTPases as was expected with loss of prenylation, simvastatin caused a paradoxical
increase in the GTP-bound forms of RhoA, Rac1 and Cdc42. Furthermore, simvastatin disrupted the binding of Rho GTPases with
the cytosolic inhibitor Rho GDIa, which provides a potential mechanism for GTP loading of the cytosolic Rho GTPases. We also
show that the unprenylated RhoA- and Rac1-GTP retained at least part of their functional activities, as evidenced by the increase
in intracellular superoxide production and JNK activation in response to simvastatin. Notably, blocking superoxide production
attenuated JNK activation as well as cell death induced by simvastatin. Finally, we provide evidence for the involvement of the
B-cell lymphoma protein 2 family, Bcl-2-interacting mediator (Bim), in a JNK-dependent manner, in the apoptosis-inducing
activity of simvastatin. Taken together, our data highlight the critical role of non-canonical regulation of Rho GTPases and
involvement of downstream superoxide-mediated activation of JNK pathway in the anticancer activity of simvastatin, which
would have potential clinical implications.
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Statins are 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)
reductase inhibitors that have been widely used as choles-
terol-lowering agents to treat hyperlipidemia in the clinic. In
the last decade, mounting experimental evidence has
demonstrated that statins exert cytostatic and pro-apoptotic
effects in a wide variety of cancers, including breast
carcinoma, prostate carcinoma, colorectal carcinoma, lung
carcinoma, glioblastoma, osteosarcoma, acute myeloid leu-
kemia (AML), multiple myeloma and skin carcinoma.1–7

Statins inhibit cell proliferation by arresting cancer cells in

the G1 or S, and occasionally G2/M, phase by modulating cell
cycle regulatory proteins.8,9 For example, statins were shown
to regulate G1/S arrest in colorectal cancer cells by
upregulating p21 and p27 expression and downregulating
cyclin-dependent kinase 2 activity.7

In addition to their effects on cell proliferation, statins have
also been reported to induce apoptosis in cancer cells.
Although there is experimental evidence to implicate protein
geranylgeranylation in the regulation of statin-mediated
apoptosis, a complete understanding of the functional
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mechanisms underlying the death-inducing effect of statins in
cancer cells is lacking. Recent advances in this regard provide
evidence to implicate the mitogen-activated protein kinase
pathway in the anticancer activity of statins. To that end,
lovastatin was shown to induce apoptosis in AML cells by
downregulating the pro-survival Raf-MEK-ERK pathway.10 In
a separate study, statin-induced apoptosis in osteosarcoma
cells was shown to be mediated by the inhibition of
extracellular-regulated kinase (ERK) signaling and down-
regulation of B-cell lymphoma protein 2 (Bcl-2) expression,
downstream of Ras homolog gene family, member A (RhoA)
inhibition.5 Other reports have also suggested that statins
mediate apoptotic response by activating Fas (cluster of
differentiation 95-Apo1)-induced apoptotic signaling via their
ability to disrupt cholesterol-enriched lipid rafts.11 More
importantly, the cytostatic and cytotoxic effects of statins are
significantly more pronounced in malignant cells compared
with non-malignant cells, which has been attributed to the
higher expression of HMG-CoA reductase and a greater need
for mevalonate (MVA)-derived isoprenoids in cancer cells.12

Therefore, statins are promising treatment options, with a high
therapeutic index and demonstrated specificity in targeting
cancer cells.13,14 However, epidemiological studies and
clinical trials assessing the clinical efficacy of statins for
treating cancers have drawn controversial conclusions.15,16

Hence, a better understanding of the mechanisms underlying
the anticancer activity of statins is desirable to identify specific
targets and signaling networks for potential therapeutic
relevance.

Here, we set out to investigate the molecular mechanisms
underlying the apoptotic activity of statins in human colorectal
carcinoma cells, particularly focusing on the MVA-regulating
activity of statins. Our results provide evidence that simvas-
tatin-induced apoptosis is mediated by GTP loading of
unprenylated Rho GTPases, and involves the intermediacy
of JNK-mediated Bcl-2-interacting mediator (Bim) activation,
downstream of intracellular superoxide production. These
data provide a novel underlying mechanism for the anticancer
activity of simvastatin, which could have potential implications
for the strategic use of statins in the management of cancer.

Results

Simvastatin activates mitochondrial-mediated death
pathway by inhibiting protein geranylgeranylation in
HCT116 cells. In the present study, we first examined the
effects of simvastatin on the viability of HCT116 colorectal
cancer cells. Simvastatin induced potent cell loss in a dose-
dependent manner (Figure 1a) and impaired the ability of
cancer cells to form colonies in a longer-term assay
(Figure 1b). We then determined the ability of MVA and
two of its downstream metabolites to rescue the statin-
induced decrease in cancer cell viability. Simvastatin-
induced cytotoxicity and colony-inhibition effects were
completely prevented by preincubation with MVA and largely
so by geranylgeranylpyrophosphate (GGPP), whereas
farnesylpyrophosphate (FPP) was much less effective
(Figures 1a and b). Moreover, the protein geranylgeranyl-
transferase I (GGTase-I) inhibitor geranylgeranyltransferase
inhibitor (GGTI)-298, but not the protein farnesyltransferase

inhibitor (FTI)-277, induced cell loss (Supplementary
Figure S1A), supporting a more important role of protein
geranylgeranylation than farnesylation in simvastatin’s
cytotoxic effects. Assessment of proteolytic cleavage of
cysteine-dependent aspartate-specific protease (caspase)-3
as well as cleavage of the caspase-3 substrate poly (ADP-
ribose) polymerase (PARP) confirmed that simvastatin-
induced cell death in HCT116 cells was consistent
with apoptotic execution, which could be prevented by the
pan-caspase inhibitor benzyoxycarbonyl valanyl alanyl-
fluoromethylketone (zVAD-fmk) as well as preincubation
with MVA or GGPP (Figures 1c and d). Our results also
implicate the mitochondrial death amplification pathway in
simvastatin-induced apoptosis, as evidenced by mitochon-
drial translocation of Bcl-2-associated X protein (Bax) and
the cytosolic release of cytochrome c required for efficient
apoptosome assembly (Figure 1e). The involvement of Bax
was further corroborated by data, demonstrating that
HCT116 Bax-deficient cells were relatively resistant to the
apoptosis-inducing effect of simvastatin (Figure 1f and
Supplementary Figure S2). These data indicate that simvas-
tatin induces apoptosis via caspase- and Bax-dependent
mechanisms.

Increased GTP loading of newly synthesized RhoA and
Rac1 is responsible for simvastatin-induced cell death.
In order to identify the downstream targets of protein
geranylgeranylation affected by simvastatin treatment in
HCT116 cells, we focused on looking at three well-studied
geranylgeranlyated proteins: RhoA, Ras-related C3 botuli-
num toxin substrate (Rac)1 and cell division cycle 42
(Cdc42). We first assessed the activation status of these
Rho proteins after simvastatin treatment. Interestingly, using
a GST-protein-binding domain pull-down assay, we show
that simvastatin treatment resulted in a significant increase in
GTP-loaded RhoA, Rac1 and Cdc42, and also concomitant
increases in the protein levels of RhoA and Cdc42
(Figure 2a). This increment in protein expression and GTP
loading was significantly blocked by GGPP preincubation,
but less so by FPP (Figure 2b). We then tested the
hypothesis that the activation of these Rho-family proteins
was involved in the apoptotic effects of simvastatin. Indeed,
pharmacological inhibitors of Rac1 (NSC23766 and
EHT1864) or expression of the dominant-negative Rac1N17
significantly protected cells from simvastatin-induced apop-
tosis (Figure 2c). In addition, transfection of siRNAs targeting
RhoA or Rac1, but not Cdc42, partially abrogated simvas-
tatin-induced apoptosis (Figure 2d), suggesting the impor-
tance of RhoA and Rac1 activation in simvastatin-induced
cell death. To further characterize the impact of simvastatin
treatment on RhoA, Rac1 and Cdc42, we assessed the
prenylation and localization status of these proteins. To
quantify Rho prenylation, we extracted cells in the low cloud-
point detergent Triton X-114,17 which separates cell lysates
into an aqueous and detergent phase based on the
hydrophobicity of the respective proteins. Previous work
has shown that unprenylated rat sarcoma (Ras) and Rho-
family proteins partition into the aqueous phase, whereas
prenylated proteins partition into the detergent phase.18,19

We observed an increase of all three Rho proteins in the
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aqueous phase, which corresponded to the level of unpre-
nylated proteins (Figure 2e). Next, we studied the localization
of these Rho proteins after simvastatin treatment, with focus
on two cellular locations: the lipid rafts and the cytosol. The
lipid rafts are microdomains within the plasma membrane
that are enriched with sphingolipids and cholesterol.20–22

Lipid rafts can be isolated by the virtue of their detergent
insolubility and characterized by the presence of bona fide
raft-associated proteins, such as flotillin after

ultracentrifugation in a sucrose gradient density.23 Studies
have shown that Rho GTPases are found to be associated
with the lipid rafts of the plasma membrane.24 Further
analysis revealed that these Rho proteins were decreased
from the detergent-resistant membrane (DRM, also referred
to as lipids raft) component of the plasma membrane
(Figure 2f) and increased in the cytosolic fraction
(Figure 2g) upon simvastatin treatment. Together, these
data provide evidence to implicate cytosolic, yet activated,
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Figure 1 Simvastatin activates mitochondria-mediated death pathway by inhibiting protein geranylgeranylation in HCT116 cells. (a) Cells were preincubated with or
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RhoA and Rac1 in death signaling induced upon exposure of
cancer cells to simvastatin.

To understand the non-canonical increase of GTP-bound
RhoA and Rac1 in the wake of simvastatin treatment, we
looked at the interaction of Rho proteins with their cytosolic
sequestrant Rho GDP-dissociation inhibitor (RhoGDI)a, as
earlier findings have indicated that unprenylated Rho proteins
can no longer interact with RhoGDIs.25 Indeed, we found that
simvastatin treatment significantly impaired the association of
RhoA and Rac1 with RhoGDIa (Figure 3a), suggesting a
mechanism for enhanced GTP loading of these GTPases.

As protein prenylation is a post-translational modification,
inhibition of protein synthesis would be expected to prevent
simvastatin-dependent apoptosis. To test this hypothesis, we
assessed the effect of protein synthesis inhibitor cyclo-
heximide on simvastatin-treated HCT116 cells. Indeed, cells

pretreated with cycloheximide were rendered insensitive
to simvastatin, as shown by a significant decrease in
simvastatin-induced PARP cleavage (Figure 3b), confirming
that simvastatin-mediated apoptosis is dependent on the
presence of newly translated proteins. Furthermore,
we showed that cycloheximide pretreatment completely
prevented simvastatin-induced accumulation of RhoA- and
Rac1-GTP, while it alone had little effects on their activation
status (Figure 3c).

Simvastatin induces intracellular superoxide production
downstream of RhoA and Rac1 activation. The critical
role of RhoA and Rac1 activation in mediating the antitumor
effects of simvastatin prompted us to investigate the down-
stream effectors of RhoA and Rac1 involved in transmitting
the signal. One such candidate effector molecule is the

Figure 2 Increased GTP loading of RhoA and Rac1 is responsible for simvastatin-induced cell death. (a) Cells were treated with simvastatin for the indicated duration;
(b) cells were preincubated with MVA, GGPP or FPP. In Both (a) and (b), GTP-bound RhoA, Rac1 and Cdc42, together with total cell lysates were assessed by western
blotting. (c) Cells were subjected to preincubation with 150mM NSC23766, 20mM EHT1864 or expression of dominant-negative mutant Rac1N17 before simvastatin
treatment. Cell viability was assessed by crystal violet staining, and cell lysates were probed for PARP cleavage. Rac1 and Myc expression was also assessed to confirm the
successful transfection of Rac1N17 plasmid. Data are shown as mean±S.D. of at least three independent experiments. *Po0.05 compared with simvastatin treatment
alone. (d) Cells were silenced with RhoA, Rac1 or Cdc42 before treatment with simvastatin, and cell viability was assessed by crystal violet staining. In (e–g), cells were treated
with simvastatin for 12 and 20 h. (e) Cell lysates were separated into aqueous and detergent-rich phases using Triton X-114 phase-separation assay. (f) Lipid raft fractions
were prepared using sucrose gradient ultracentrifugation. (g) The cytosolic fractions of cells free from contaminations from membranes were obtained from ultracentrifugation.
Following the preparation procedures in (e–g), protein expression of RhoA, Rac1 and Cdc42 was assessed by western blotting. All immunoblots are representative of at least
two independent experiments
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reactive oxygen species superoxide, as both RhoA and Rac1
have been shown to be involved in intracellular superoxide
production.26,27 In HCT116 cells, simvastatin triggered
sustained superoxide production as measured by two
independent methods, lucigenin chemiluminescence assay
(Figure 4a) and the superoxide-sensitive fluorescent dye
dihydroethidium (DHE; Figure 4b). Preincubation with three
different types of cell permeable superoxide scavengers,
namely diphenyleneiodonium (DPI), Tempol and Tiron,
significantly abrogated simvastatin-induced caspase-3 clea-
vage and cell loss (Figure 4c), confirming that superoxide is
an important signaling molecule in the apoptotic execution.
To further understand the link between superoxide produc-
tion and activation of Rho GTPases, we measured intracel-
lular superoxide levels after preincubation with MVA, GGPP
or FPP and in response to inhibition of RhoA, Rac1 and
Cdc42 activities. In agreement with the cell viability data,
MVA or GGPP preincubation completely blocked

simvastatin-induced superoxide production (Figure 4d). In
addition, treatment with Rac1 inhibitor and Rac1N17 as well
as siRNAs against RhoA or Rac1 also significantly lowered
simvastatin-induced superoxide production (Figure 4e).
These findings suggest that superoxide production is a
downstream effector of RhoA and Rac1 activation, following
simvastatin treatment.

Simvastatin induces JNK activation downstream of Rho
GTPases and superoxide production. Signaling by Rho
GTPases or oxidative stress is known to activate the JNK
pathway.28,29 Consistent with these observations, we also
observed sustained JNK activation as shown by the
phosphorylation at Thr183 and Tyr185 following simvastatin
treatment (Figure 5a). Additionally, pharmacological inhibitor
of JNK kinase, SP600125, significantly blocked the cytotoxic
effects of simvastatin (Figure 5b), confirming the essential
role of JNK in apoptosis induction. We next asked whether a
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experiments. *Po0.05 compared with untreated cells. (c) Cells were preincubated with or without 5 mM DPI, 2.5 mM Tempol or 10mM Tiron before treatment with
simvastatin, cell viability was assessed by crystal violet staining and cell lysates were probed for caspase-3 cleavage. (d) Cells were preincubated with or without MVA, GGPP
or FPP before exposure to simvastatin. (e) Cells were treated with NSC23766, transfected with Rac1N17, or transfected with siRNAs against RhoA, Rac1 or Cdc42 before
simvastatin treatment. Intracellular superoxide level was determined using lucigenin chemiluminescence assay for both (d) and (e). Data are shown as mean±S.D. of at least
three independent experiments. *Po0.05 compared with simvastatin treatment alone. Immunoblots are representative of at least two independent experiments
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cross talk existed between JNK activation and Rho
GTPases-mediated superoxide production, following simvas-
tatin exposure. Restoring protein geranylgeranylation via
MVA or GGPP preincubation largely prevented simvastatin-
induced JNK phosphorylation (Figure 5c). Furthermore,
pharmacological and genetic inhibition of RhoA or Rac1
activation, as well as preincubation with pharmacological
scavengers of superoxide, also significantly abrogated JNK
activation (Figures 5d and e). These findings implicate JNK
signaling as a downstream target of RhoA/Rac1 activation
and superoxide production in simvastatin-induced apoptosis.

Simvastatin increases expression of pro-apoptotic
Bim-EL in a JNK-dependent manner. Signaling by the
JNK pathway has been linked to altered expression of
several Bcl-2 family members in other systems.30–32 Inter-
estingly, we observed a sustained increase in the levels of
the extra-long isoform of the pro-apoptotic Bcl-2 family
protein Bim (Bim-EL) following simvastatin treatment

(Figure 6a), suggesting that this pro-apoptotic protein might
be involved in simvastatin-induced colorectal cancer cell
apoptosis. Indeed, siRNA-mediated silencing of Bim-EL
provided significant protection from simvastatin-induced
apoptosis (Figure 6b) and reduced simvastatin-mediated
caspase-3 and PARP cleavage (Supplementary Figure S3),
thus validating the role of Bim-EL as an apoptosis effector in
our model system. In addition, pretreatment of HCT116 cells
with the JNK inhibitor SP600125 markedly decreased
simvastatin-mediated Bim-EL expression (Figure 6f). Similar
effects were observed upon preincubation of cells with MVA,
GGPP, inhibition of RhoA or Rac1 activation and scavenging
of superoxide (Figures 6c–e).

Taken together, our data demonstrate that simvastatin
elicits potent tumoricidal effects in HCT116 cells by activating
the mitochondrial apoptotic pathway. By inhibiting protein
geranylgeranylation, simvastatin paradoxically increases the
active forms of RhoA and Rac1, which then leads to the
activation of the downstream signaling cascade involving
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superoxide production, JNK activation and Bim-EL upregula-
tion. The model is represented schematically in Figure 7. This
phenomenon does not appear to be limited to this particular
cell line, as studies using SHEP-1 neuroblastoma cells also
implicated the multiple aforementioned players in mediating
simvastatin’s cytotoxic effects (Supplementary Figure S4).
Overall, these findings not only provide compelling evidence
for simvastatin’s anticancer activities, but also suggest the
importance of the identified molecular mechanism in other
simvastatin-sensitive cancer cell types.

Discussion

Simvastatin-mediated apoptosis is dependent on protein
geranylgeranylation. In the present study, we show that
simvastatin induces potent cell death in colorectal cancer cell
line HCT116 by short-term cell viability assays and long-term
colony formation assay. Further investigation revealed that

the molecular events in simvastatin-induced cell death are
consistent with classical apoptosis marked by proteolytic
cleavage and activation of caspases. In addition, the almost
complete protection of cells by pretreatment with pan-
caspase inhibitor zVAD-fmk confirms that simvastatin
induces cell death via a caspase-dependent pathway. We
also show that mitochondria are implicated in the apoptotic
signaling elicited by simvastatin, as evidenced by the
translocation of Bax to the mitochondria and release of
cytochrome c into the cytosol. Further comparison between
HCT116 wild type and its Bax knockout counterpart shows
that Bax� /� cells are much less sensitive to simvastatin
treatment, confirming that Bax-mediated mitochondrial apop-
totic pathway is the major mechanism responsible for
simvastatin’s apoptotic effects. This observation is consistent
with several other reports, showing the importance of
mitochondrial apoptotic pathway in breast tumor cells,33

lymphoblasts and myeloma cells34 upon exposure to statins.
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Several downstream metabolites in the MVA pathway have
been suggested to be involved in establishing statins’
antitumor effects, with most of the evidence pointing toward
depletion of cellular GGPP.35–38 Our data also suggests that
simvastatin induces apoptosis in HCT116 via GGPP deple-
tion. In addition to HCT116 cells, we also observed that
preincubation with GGPP rescues simvastatin’s cytotoxicity in
breast, lung and neuroblastoma cancer cells (Supplementary
Figure S1B). One implication from these observations is that
the impact from loss of protein geranylgeranylation on cell
viability is more severe than loss of farnesylation, highlighting
the critical involvement of one or more geranylgeranylated
proteins, for example, Rho, Rac and Cdc42, in the growth and
survival of transformed cells. In this regard, simvastatin
treatment increased the levels of unprenylated RhoA, Rac1
and Cdc42 as expected, and correspondingly their cytosolic
localization. Strikingly, however, simvastatin also promoted
GTP loading of RhoA, Rac1 and Cdc42, and also increases in
the total protein levels of RhoA and Cdc42. Importantly, these
cytosolic GTP-loaded forms of RhoA and Rac1, but not
apparently Cdc42, were functional to mediate cell death in
simvastatin-treated HCT116 cells, as evidenced by the
rescue from this cell death through pharmacological or genetic
inhibition of RhoA or Rac1 function.

A mechanistic basis of the non-canonical activation of Rho
proteins by simvastatin treatment came from the finding,
confirming earlier reports, that inhibition of geranylgeranyla-
tion prevented Rho proteins from interacting with its negative
regulator, RhoGDI. RhoGDIs are responsible for sequester-
ing geranylgeranylated GDP-bound Rho proteins in a
cytosolic complex and for preventing the guanine nucleotide
exchange.39 Hence, we propose that the decreased associa-
tion between Rho proteins and their cytosolic inhibitor leads
to the accumulation of GTP-bound Rho proteins, possibly
owing to the spontaneous exchange of GTP for GDP or
potentially involving activities of guanine nucleotide
exchange factors.40 Growing evidence indicates that inhibi-
tion of prenylation is able to increase Rho proteins in their
GTP-bound form regardless of their localization. The
observation has not only been seen in the cancer cell lines
used in the present study, but also in multiple cell
types treated with statins,41 and in macrophages in which
GGTase-I has been inactivated.42

In addition to the intriguing finding of Rho GTPase activation
following simvastatin treatment, we observed elevated protein
levels of RhoA and Cdc42 following such treatment that was
reversed with GGPP preincubation. Previous studies have
proposed that geranylgeranylated Rho proteins are more
susceptible to proteasomal degradation; hence, inhibition of
geranylgeranylation by statins might slow the degradation
process and result in increased protein levels.43,44 However,
we did not observe changes in protein stability of RhoA and
Cdc42 in our model. Instead, de novo synthesis of mRNA and
protein is more likely to be responsible for the increased protein
expression, as pretreatment with transcription inhibitor actino-
mycin D (ActD) or protein synthesis inhibitor cyclo-
heximide reduced protein levels of RhoA and Cdc42 induced
by simvastatin (Supplementary Figure S5). More interestingly,
we provide evidence that simvastatin-induced upregulation of
Rho protein level is functionally relevant to the cell death signal,
as cells treated with cycloheximide were much less sensitive to
simvastatin treatment. Moreover, cycloheximide treatment
reduced levels of the GTP-loaded RhoA and Rac1, the two
Rho GTPases responsible for simvastatin-mediated apoptosis,
suggesting that the newly synthesized unprenylated Rho
proteins are those that get accumulated in the GTP-bound form.

Collectively, these studies have revealed that post-transla-
tional geranylgeranylation can impact Rho GTPases at both
translational and post-translational levels, and that the
resultant non-canonical activation of Rho GTPases produces
species that are functional to meditate the apoptotic effects of
simvastatin in cancer cells. Our results challenge the view that
inhibiting geranylgeranylation is a means to block the activity
of Rho-family proteins. On the contrary, inhibiting the process
may stimulate both their expression and specific functions.
Future investigations characterizing the status of Rho
GTPases in statin-sensitive cancer cells should enhance our
understanding of the molecular features required for the
non-canonical regulation of Rho GTPases across different
cell types.

Hierarchical involvement of superoxide, JNK, and Bim
downstream of RhoA and Rac1 in simvastatin-induced
cell death. To further explore the mechanism of how
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activation of RhoA and Rac1 mediate the cell death response
to simvastatin, we identified superoxide production as an
important downstream consequence of simvastatin treat-
ment. Both Rac1 and RhoA are capable of activating the
NADPH oxidase (NOX) complex that generates superoxide.
Indeed, our data suggested that the NOX complex is a main
source of superoxide production, as evidenced by the
protective effect of the NOX inhibitor, DPI.45 Our preliminary
findings showed that gene silencing of NOX2 significantly
reduced superoxide level and protected cells from simvas-
tatin-induced cellular insult (Supplementary Figure S6).
These data indicate that the unprenylated yet activated
RhoA and Rac1 can engage the NOX complex to generate
superoxide in simvastatin-treated cells, which then leads to
oxidative stress and cancer cell death. One important
question that remains to be addressed is the site for the
assembly of the functional NOX complex in simvastatin-
treated cancer cells, as this is unlikely to be the conventional
location of the plasma membrane, as the unprenylated RhoA
and Rac1 will not be found there.

The finding that superoxide generation is important in
simvastatin-induced cell death raised the question as to
whether JNK signaling was involved, as several studies
have linked these two processes. Oxidative stress can
modulate JNK activation,46,47 and JNK activation has been
reported to be required for statin-mediated apoptosis in
human breast cancer cells,48 C6 glioma cells,49 salivary
adenoid cystic cancer cells50 and ovarian cancer cells.51

Here, we were able to demonstrate a role for a Rho-
superoxide-JNK cascade in simvastatin-mediated apopto-
sis in HCT116 colorectal cells, indicating that this axis might
also be active in other statin-sensitive cancer types.
Furthermore, we identified the pro-apoptotic Bcl-2 family
member Bim as a downstream target of the JNK pathway.
This is consistent with the well-characterized role of JNK-
Bim cascade in apoptosis in the nervous system upon NGF
withdrawal.52–54 Previous studies have demonstrated that
Bim is a unique BH3 protein that is able to directly induce the
conformational changes of Bax and Bak, or indirectly
activates Bax and Bak by neutralizing the anti-apoptotic
Bcl-2 proteins, which precedes apoptosis.55 We propose
that simvastatin-mediated increase in Bim-EL is likely to
promote mitochondrial apoptosis by tilting the balance of
pro- and anti-apoptotic Bcl-2 family proteins. Our findings
demonstrate the importance of Bim-EL upregulation in
statin-mediated cancer cell death, and reinforce the report
of Jang et al.6 implicating Bim-EL upregulation in lovastatin-
induced glioblastoma cell death. Together with the signal-
ing cascade we have established in simvastatin-treated
HCT116 cells, our data in melanoma M14 cells further
supports the notion that the JNK-Bim cascade may be a
common mechanism activated by Rac1 signaling to
mediate cell death in response to simvastatin treatment
(Supplementary Figure S7).

Taken together, our data demonstrates the tremendous
potential of simvastatin to induce cancer cell death. Further,
the molecular players identified in these studies not only
provide novel potential targets for therapeutic manipulation,
but also lay the foundation to explore the role of statins as an
adjuvant in combination therapies to treat cancer.

Materials and Methods
Cell lines and reagents. HCT116 WT (p53þ /� ) and Bax� /�
colorectal carcinoma cells were generously provided by Dr. Bert Vogelstein
(The Johns Hopkins University School of Medicine) and maintained in McCoy 5A
(Gibco Invitrogen, Carlsbad, CA, USA). Simvastatin, GGTI-298, FTI-277 and
NSC23766 were purchased from Merck Millipore (Billerica, MA, USA). MVA,
GGPP, FPP, SP600125, Tiron, Tempol, Triton X-114, DPI and cycloheximide were
purchased from Sigma (St Louis, MO, USA). EHT1864 was purchased from Tocris
Biosciences (Bristol, UK). Pan-caspase inhibitor zVAD-fmk was purchased from
Alexis Biochemicals (Lausanne, Switzerland).

Cell viability and tumor colony-forming assay. Cell viability following
drug treatment was determined by both crystal violet staining and 3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay, as described
previously.56,57 For colony-forming assay, 10 000 cells per treatment were replated
in a 6-well plate in complete tissue culture medium and grown for 7 days. The
colonies formed were then stained with crystal violet (Sigma).

Transfection of plasmids and siRNAs. The Calcium Phosphate
Mammalian Transfection Kit (Clonetech Laboratories, Palo Alto, CA, USA) was
used for transfection of plasmids or siRNAs into HCT116 cells, according to the
manufacturer’s instructions. In all, 1 mg/ml of pIRES1hyg vector (empty vector) and
myc-tagged pIRESRacN17 plasmids (Rac1N17; generously provided by Dr. Marie-
Véronique Clément, Department of Biochemistry, Singapore) were used. For
siRNAs, 35 nM was used for siRNAs targeting RhoA and Cdc42, while 100 nM
was used for siBim-EL and siRac1. ON-TARGETplusSMARTpoolsiRNAs (a
mixture of four siRNAs in a single reagent) targeting RhoA, Rac1, Cdc42 as well
as siRNA-negative control were purchased from Dharmacon Technologies
(Lafeyette, CO, USA). The single siBim sequence was purchased from Qiagen
(Duesseldorf, Germany). Downstream procedures were carried out at least 30 h
from the time of adding transfection reagents.

Antibodies used in western blotting. Primary antibodies specific for
RhoA, Cdc42, RhoGDIa, Bax, cytochrome c, voltage-dependent anion channel,
b-actin and GAPDH were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Bim, JNK, copper/zinc superoxide dismutase, PARP, myc-tag and
caspase-3 were obtained from Cell Signaling Technology (Danvers, MA, USA),
and Rac1 and phosphorylated-JNK were purchased from Merck Millipore. Flotilin
was purchased from Abcam (Cambridge, UK).

Isolation of GTP-loaded RhoA, Rac1 and Cdc42 GTPases. The
GTP-loaded form of RhoA, Rac1 and Cdc42 were pulled down with GST-Rhotekin
beads (Cytoskeleton, Denver, CO, USA) or GST-PAK beads (Merck Millipore),
respectively, according to the manufacturer’s instructions.

Mitochondrial cytoplasmic fractionation. Mitochondrial and cytosolic
fractions were obtained as described elsewhere.57 In this project, further
purification was done to obtain cytosolic fractions free from contaminations from
light membranes. After isolating the mitochondrial fractions, the supernatant was
subjected to ultracentrifugation at 100 000� g for 1 h at 4 1C, and the resultant
supernatant was then subjected to western blot analysis.

Isolation of DRMs (lipid rafts) by sucrose gradient ultra-
centrifugation. Cells were lysed in HEPES buffer containing 1% Triton
X-100, followed by homogenization for 20 strokes with a dounce homogenizer.
The lysate was then subjected to 20 passes through a 27G syringe, followed by
three times sonication (10 s pulses at 40 V). The lysate was then mixed with an
equal volume of 80% sucrose in HEPES buffer, followed by overlaying with 1.5 ml
of 30% sucrose and 1.5 ml of 5% sucrose solutions. The sucrose gradient was
centrifuged for 21 h at 4 1C at 32 000 r.p.m., and eight 0.5 ml fractions were
harvested separately. Thirty microlitres from fraction number 2–6 were used for
subsequent western blot analysis.

Triton X-114 phase separation. Cells were lysed in the lysis buffer
(20mM Tris, 150mM NaCl, 1% Triton X-114) followed by centrifugation at
13 000� g for 15min. The resultant mixture was incubated at 37 1C for 10min
and two phases were separated by brief centrifugation (aqueous phase and
detergent-rich pellet). The detergent-rich pellet was suspended in lysis buffer
without Triton X-114.
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Determination of superoxide. Intracellular superoxide level was deter-
mined by a lucigenin-based chemiluminescence assay56 or a fluorescent probe
Dihydroethidine (Invitrogen), as described previously.57

Statistical analysis. Numerical data were expressed as mean±S.D.
Student’s t-test was performed and the statistical significance was set at Po0.05.
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