
Primary hematopoietic cells from DBA patients with
mutations in RPL11 and RPS19 genes exhibit distinct
erythroid phenotype in vitro
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Diamond-Blackfan anemia (DBA) is caused by aberrant ribosomal biogenesis due to ribosomal protein (RP) gene mutations. To
develop mechanistic understanding of DBA pathogenesis, we studied CD34þ cells from peripheral blood of DBA patients
carrying RPL11 and RPS19 ribosomal gene mutations and determined their ability to undergo erythroid differentiation in vitro.
RPS19 mutations induced a decrease in proliferation of progenitor cells, but the terminal erythroid differentiation was normal
with little or no apoptosis. This phenotype was related to a G0/G1 cell cycle arrest associated with activation of the p53 pathway.
In marked contrast, RPL11 mutations led to a dramatic decrease in progenitor cell proliferation and a delayed erythroid
differentiation with a marked increase in apoptosis and G0/G1 cell cycle arrest with activation of p53. Infection of cord blood
CD34þ cells with specific short hairpin (sh) RNAs against RPS19 or RPL11 recapitulated the two distinct phenotypes in
concordance with findings from primary cells. In both cases, the phenotype has been reverted by shRNA p53 knockdown. These
results show that p53 pathway activation has an important role in pathogenesis of DBA and can be independent of the RPL11
pathway. These findings shed new insights into the pathogenesis of DBA.
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Diamond Blackfan anemia (DBA) is a rare congenital disorder
characterized by a moderate to severe anemia, in conjunction
with erythroblastopenia (absence or o5% of erythroid
precursors) in an otherwise normocellular bone marrow. In
40% of DBA cases, various malformations, mostly in the
cephalic area, thumbs and upper limbs, are observed.1,2

More than 60% of DBA patients respond to steroid treatment.
The steroid-resistant DBA patients are treated with regular
transfusions in conjunction with iron chelation therapy. The
only curative treatment is hematopoietic stem cell
transplantation.1–3

Mutations in gene encoding the ribosomal protein S19 gene
(RPS19) were the first to be identified in DBA and 25% of DBA
patients carry mutations in this gene.4 Recently, mutations in
genes encoding other RPs of both the small and the large
subunits have been identified in DBA patients: RPS24 (2%),5

RPS17 (o1%),6 RPL5 (7%),7–9 RPL11 (5%),7–9 RPL36

(o1%),8 RPS7 (o1%),8 RPS27a (o1%),8 RPS15 (o1%),8

RPL35a (3%),10 RPS10 (3%)11 and RPS26 (7%).11 More
recently, large deletions in RPS19, RPS17, RPS26 and
RPL35a genes have been identified in 17% of DBA cases.12

Thus, E75% of the DBA patients exhibit a RP gene mutation
or deletion. The remaining 25% may carry a mutation in the
non-coding region of a RP gene or in other gene(s) yet to be
defined. Mutations identified in RPS19, RPS10, RPS24 and
RPS26, as well as reduced expression of several RPs by
small interfering RNAs, result in defective ribosomal biogen-
esis at different stages of ribosomal RNA (rRNA) matura-
tion.11,13–16 Defective ribosomal biogenesis appears to be the
major cause of DBA.17

Animal models18–23 have begun to provide some mechan-
istic insights into DBA pathogenesis. Large scale chemical
mutagenesis screen for dark skin phenotype identified a
mutation in rps19 or rsp20 genes (Dsk3þ /� and Dsk4þ /� ,
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respectively)21 in association with two clinical features
associated with DBA, growth retardation and a modest
decrease in red cell count. In this model, p53 expression
level was increased and the phenotype was rescued following
inhibition of p53. The p53 pathway was also implicated in
Zebrafish morpholino models of RPS19 and RPL11,
which show a delay in erythroid differentiation.18,19,23

Furthermore, Fumagalli et al.24 have shown that depletion of
RPS6, RPS23 and RPL7a in hepatocytes leads to the
activation of p53 pathway with increased expression of
RPL11 suppressing the murine double minute 2 (MDM-2)
E3 ligase activity against p53.

To further understand the mechanistic basis of DBA, we
explored the ability of primary circulating CD34þ cells of DBA
patients with either RPS19 or RPL11 mutations to undergo
in vitro erythroid differentiation. In parallel, we studied
erythroid differentiation of normal human CD34þ cells
infected with specific short hairpin (sh) RNA against RPS19
and RPL11. We show here that while RPS19 depletion
decreases progenitor proliferation without affecting terminal
erythroid differentiation, RPL11 depletion affects both pro-
genitor cell proliferation and erythroid differentiation with
marked apoptosis. Although the p53 pathway is involved in
both situations, its role is more limited in RPS19-deficient
samples. Thus, we identified two different erythroid differ-
entiation phenotypes due to different ribosomal mutations that
could account for erythroblastopenia, the main characteristic
of DBA. Strikingly, p53 pathway was activated without
increased RPL11 expression level in RPL11-mutated DBA
patients or RPL11-depleted cord blood CD34þ cells implying
that RPL11 is not necessary in p53 activation following RP
depletion.

Results

Two different erythroid differentiation phenotypes in
DBA depending on the specific RP defect. We compared
the ability of CD34þ cells isolated from peripheral blood from
DBA individuals with RPS19 (n¼ 12) or RPL11 (n¼ 3)
mutations and CD34þ cells from healthy controls (n¼ 15)
to undergo terminal erythroid differentiation (Table 1).
CD34þ cells were cultured either in two phases (7 day
methylcellulose and then liquid culture for additional 5 days)
or in a single phase (liquid culture over 12 days). At day 7 of
the culture in methylcellulose, immunoblot analyses con-
firmed the decreased expression of RPS19 or RPL11 in DBA
patients compared with healthy controls (Figure 1a), with
RPL11 expression consistently decreasing to a greater
extent than RPS19 expression. In liquid culture, we observed
a decrease in cell amplification for all DBA patients
irrespective of the mutational status. As illustrated in
Figure 1b, this decrease was less pronounced from D0 to
D7 for samples with RPS19 mutations than for samples with
mutations in RPL11. This trend of decreased proliferation
continued into later stages of culture (D7 to D10). Cytological
examination of erythroid cell precursors generated did not
show any significant abnormality when RPS19-mutant
CD34þ cells were cultured (n¼ 12) while immature
and some apoptotic or necrotic cells were observed
when RPL11-mutant CD34þ cells were cultured (n¼ 3) T
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(Figure 2a). Accordingly, a slight decrease in the percentage
of maturing cells (CD36þ /GPAþ (glycophorin A)) was
observed in cultures of RPL11-mutated cells (n¼ 3) com-
pared with RPL19-mutated (n¼ 2) and control (n¼ 8)
cells (Figure 2b), and the percentage of CD34þ erythroid
cells was higher in RPL11-mutated cell cultures (Figure 2c).
In addition, the percentage of apoptotic cells was much
higher in RPL11-mutated cell cultures, as assessed by the
quantitation of DAPI� /Annexin-Vþ cells (Figure 3a), by the

TUNEL assay (data not shown), and by documentation of
increased level of cleaved caspase-3 (Figure 3b).

Knockdown of RPS19 and RPL11 reduces the prolifera-
tion of erythroid precursors. As we are unable to obtain
enough primary CD34þ cells from DBA patients to perform
all the necessary studies, we used primary normal human
CD34þ cells and shRNA-encoding lentiviruses to speci-
fically inhibit RPL11 and RPS19 mRNA (Supplementary
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Figure 1 Erythroid proliferation is decreased to greater extent in DBA patients carrying mutations in RPL11 gene, compared with patients with mutations in RPS19 gene.
(a) Representative immunoblots of erythroid precursors with RPS19 and RPL11 antibodies from DBA patients mutated in RPS19 (left panel) and in RPL11 (right panel) during
terminal erythroid differentiation compared with controls. The expression levels were normalized with expression levels of actin. (b) Mean erythroid progenitor and precursor
cell proliferation from peripheral CD34þ cells from controls (n¼ 15), DBA patients carrying mutations in RPS19 (n¼ 12) or in RPL11 (n¼ 3) gene from D0 to D12 during
erythroid differentiation. Statistical test: Student’s t-test
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File 1A–C). The efficacy of shRNA was validated in UT-7
cells and in 7-day erythroid cultures of cord blood CD34þ

cells. One of the three shRNAs targeting RPL11 tested,
shRPL11A induced a 95% and a 65% decrease in RPL11
mRNA level in UT-7 and erythroid cells, respectively,
whereas a previously described shRPS19C25 induced a
90% and a 50–70% decrease in RPL19 mRNA level in UT-7
and erythroid cells, respectively (Supplementary File 1B). At
the protein level (Supplementary File 1C), the decrease
obtained in RPS19 protein expression (40–55%) was
consistently lower than that noted for RPL11 expression
(decrease of 60–90%), which mimicked the situation
observed in primary cells from DBA patients (Figure 1a).
Proliferation of erythroid cells following depletion of RPS19
and RPL11 was assayed by counting cells in triplicate at
various times following initiation of cell culture in four
independent experiments. Although no difference in prolif-
eration was noted between non-infected cells and cells
infected with the irrelevant shRNA (shSCRamble), shRPS19
induced a decrease in cell proliferation (Figure 4a and
Supplementary File 2) an effect that was even more
pronounced following infection with shRPL11 (Figure 4a
and Supplementary File 2). As shown in Figure 4b and
Supplementary File 2, the largest decrease in cell prolifera-
tion was noted between D4 and D7.

Depletion of RPL11 specifically delays erythroid differ-
entiation with increased apoptosis. Flow cytometry using
the differentiation antigens CD34, CD36, CD71 and GPA
showed a delay in erythroid differentiation following RPL11
depletion but not following RPS19 depletion. Indeed, the
same percentages of CD36þ /GPAþ cells (50±9%) and
CD71þ (79±6%) were present after shRPS19 treatment as
in controls (42±9% and 53±13% of CD36þ /GPAþ ,
78±1% and 85±4% of CD71þ in non-infected and
shSCR-infected cells, respectively; Figures 5a and b). In
contrast, less CD36þ /GPAþ (20±9%) and CD71þ

(31±15%) cells were found following infection with shRPL11
(Figures 5a and b). This was related to a blockage or delay in
erythroid differentiation as more residual CD34þ -positive
cells were detected in RPL11 (24±10%)-depleted cell
cultures than in control (8±1% and 4±1.5%) and RPS19
(7±3%)-depleted cell cultures (Figure 5b).

Cytological examination showed that RPL11-depletion
induced the appearance of apoptotic cells at day 7, which
was not seen in controls and RPS19-depleted cells (data not
shown). Flow cytometry analyses confirmed that RPL11
depletion induced a striking increase in the percentage of
Annexin-V-positive cells at D7 (Figure 5c), and immunoblot
experiments detected cleaved caspase-3 and cleaved poly
(ADP-ribose) polymerase (PARP) in RPL11-depleted cells,
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which was not observed in controls and in RPS19-depleted
cells, in which Bcl-XL was increased (Figure 5d). These
findings are consistent with the higher degree of apoptosis
observed in primary CD34þ cells with reduced expression of
RPL11 due to gene mutations.

p53 pathway is activated in primary CD34þ cells from
DBA patients and following RPS19 or RPL11 depletion in
normal CD34þ cells. We analyzed the p53 pathway in
erythroid cells from six DBA patients – three with mutant
RPS19 (RPS19þ /mut) and three with mutant RPL11
(RPL11þ /Mut). Increased level of p53 was noted in all DBA
patients, suggesting stabilization of the protein (Figures 6a
and b). Furthermore, the transcript of p21, a primary target of
p53, was markedly increased in erythroid cells with mutant
RPS19 (32.3-fold, and 7.4-fold at D7 and D10, respectively)
and with mutant RPL11 (17-fold and 49.4-fold at D7 and D10,
respectively) confirming activation of p53 (Figure 6a). An
increase in p53 and phospho-p53 protein expression levels
was also observed in the DBA patients and in RPS19-
and RPL11-depleted CD34þ cells (Figures 6b and d,
Supplementary File 3), with RPL11 depletion increasing the
protein levels to a higher extent than RPS19 depletion. To
further confirm the activation of p53, we tested the transcript
levels of three p53 targets (p21, Bax and Noxa). Following
depletion of RPL11, significant increase in transcripts of all
three targets was noted with the most notable increase (16.2-
fold) seen for p21. The effect of RPS19 depletion was less
pronounced with a slight increase in Bax (twofold) and a
larger increase in p21 (fivefold), with no increase in Noxa
mRNA (Figure 6c). Although an increase in p21 protein was
observed with both RPS19 and RPL11 shRNAs, the increase
in Bax protein expression level was most pronounced

following depletion of RPL11 (Figure 6d). Taken together,
these results show that depletion of RPS19 and that of
RPL11 lead to differential activation of the p53 pathway in
erythroid cells.

As the documented decrease in cell proliferation cannot be
totally explained by apoptosis, especially after RPS19
depletion, we studied cell cycle progression of erythroid cells
derived from primary CD34þ cells of two RPL11þ /Mut DBA
patients and following RPS19 and RPL11 depletion in normal
CD34þ cells (Figure 7). An increased number of cells in
G0/G1 phase was observed in both patients carrying RPL11
mutation, which was more significant at D13 than at D10
(Figure 7a). A small increase in cells in G0/G1 phase was also
noted following infection with the shRPS19 (49±0.6%)
compared with either non-infected cells (43±0.6%) or cells
infected with shSCR (42±0.4%) (Figure 7b top and bottom
panels). Depletion of RPL11 induced a slightly larger increase
in the number of cells in G0/G1 phase (59±0.5%). In parallel,
a decrease in percentage of cells in S and in G2/M phases was
noted (Figure 7b). Moreover, cells in subG1, which represent
apoptotic cells, were present following infection with shRPL11
(8±0.8%), confirming that increased apoptosis is a feature of
RPL11 depletion (Figure 7b).

p53 activation is responsible for apoptosis and the
G0/G1 cell cycle arrest. To further define the role of p53
activation, we performed a dual shRNA infection, first
with either green fluorescent protein (GFP)-shRPS19 or
GFP-shRPL11 on day 1, then by a Cherry-shp53 infection
on day 2. The efficiency of the shp53 was confirmed in
UT7 and CD34þ cells by documenting decreases in
p53 mRNA and in protein expression levels (Figure 8a).
Following decreased expression of p53, proliferation of both
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RPS19- and RPL11-depleted erythroid precursors increased
after day 9 (Figure 8b). Strikingly, we were also able to inhibit
the activation of apoptosis induced by RPL11 depletion
(Figure 8c). p53 mRNA level returned to normal after p53
depletion in RPS19- and RPL11-depleted cells (Figure 8d).
Increased expression levels of p21, Bax and Noxa mRNA
noted following infection of CD34þ cells with either shRPL11
or shRPS19 was significantly reduced following p53 knock-
down (Figure 8d). These results confirm that the erythroid
phenotypes due to RPS19 and RPL11 depletion depend on
p53 activation. Of particular interest, the finding that there is no
increase in RPL11 expression levels following depletion of
either RPS19 or RPL11, implies that increased levels of RPL11
is not necessary for p53 activation pathway (Figure 8e).

Discussion

In spite of the significant progress made in identifying
mutations in ribosomal genes RPS19 and RPL11 in E30%
of DBA patients, the mechanistic understanding of how these
mutations account for DBA pathogenesis including erythro-
blastopenia remains to be fully defined. Erythroblastopenia in
DBA is the result of an intrinsic defect with blockade in
erythroid differentiation that occurs just following the BFU-e/

CFU-e (burst-forming unit erythroid/colony-forming unit ery-
throid) transition or between erythropoietin (EPO)-indepen-
dent and EPO-dependent stages.26 To identify the link
between depletion of a RP and the erythroblastopenia in
DBA-affected individuals, we investigated proliferation and
differentiation of primary hematopoietic cells obtained from
DBA patients in the French DBA registry. We obtained two
distinct phenotypes, decreased proliferation with either no
apoptosis or increased apoptosis, in vitro depending on the
RP mutated. Primary cells from patients harboring mutations
in RPS19 gene or normal cells following depletion of RPS19
by specific shRNA exhibited decreased proliferation of
erythroid cells. However, there was neither alteration of the
terminal erythroid differentiation as already reported in
RPS19-deficient TF1 cell lines27 nor significantly increased
apoptosis. In marked contrast, in patients with RPL11
mutation or following RPL11 depletion by specific shRNA,
we identified a more pronounced phenotype: a greater extent
of decrease in cell proliferation, delayed erythroid differentia-
tion and marked increase in apoptosis. The fact that we
recapitulated exactly the same phenotypes in primary cells
from patients harboring the RP mutations and in normal cells
following RP depletion reflects true differential effects of
different RPs on erythroid differentiation.
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Earlier studies using model organisms have implicated a
role for p53 pathway in DBA pathogenesis. In a Dark skin
(Dsk3 þ /� ) mouse model with a RPS19 missense mutation21

and in a morpholino-induced RPS19-deficiency in zebra-
fish,19,23 elevated expression levels of p53 were found to
account for the observed phenotype, which included growth
retardation, a delay in erythroid differentiation and congenital
abnormalities that mimic some DBA phenotypes in humans.
The zebrafish morpholino RPL1118 also induced p53 activa-
tion and developmental abnormalities. The present study was

performed in primary cells from a large cohort of 15 DBA
patients in which we document p53 activation and cell
accumulation in G0/G1 in all the DBA patients analyzed and
in normal cells depleted from RPS19 or RPL11. The extent of
p53 activation was consistently higher in RPL11-depleted
cells compared with RPS19-depleted cells. We validated that
the observed decrease in cell proliferation and increase in
apoptosis are directly related to p53 activation by showing that
both these defects could be reversed by RNA interference-
mediated p53 knockdown.
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Our findings with primary human DBA cells validate the
findings from murine and zebrafish models that p53 has a key
role in the decreased erythroid proliferation in DBA patho-
physiology. Kuramitsu et al.28 have previously shown that
decreased expression of RPS19 in CD34þ cells induces cell
cycle arrest with an accumulation of cell in G0 and no
apoptosis, findings consistent with data from the present
study. More recently, Badhai et al.29 showed that RPS19
insufficiency in primary fibroblasts of DBA patients causes cell

cycle arrest in G1 phase, which correlated with marked
decreases in CDK2, cyclin D and phosphorylated pRB,
indicating an impaired progression into S phase. Interestingly,
this phenotype was associated with a normal level of p53 in
primary fibroblasts of DBA patients, probably because
fibroblasts are less sensitive to stress induced by mutations
in RP genes. Our results are also in agreement with those of
Dutt et al.,30 who observed cell cycle arrest and an activation
of p53 pathway following depletion of RPS19. The activation
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of p53 pathway due to mutations in RPS19 may be mediated
by nucleolar stress due to a defect in rRNA maturation such as
that identified in the 30UTR of the ITS1 at the A2 cleavage site
of the 18S rRNA.13,15,16 It is well established that a rRNA
maturation defect generates nucleolar stress or ribosomal
stress. After ribosomal stress, levels of RPL5, RPL11,31–33

RPL23,34 RPS335 and RPS736 are increased in the nucleo-
plasm, which in turn sequester MDM-2 (or human double
minute 2 (HDM-2) in human) and prevent it from binding to
p53, its natural inhibitor. MDM-2 (or HDM-2), an E3 ubiquitin
ligase, has a role in ubiquitinating p53 and its resultant
degradation by the proteasome. In the event of a ribosomal
stress, MDM-2 (or HDM-2) fails to bind p53, and as a result,
p53 is not ubiquitinylated and thus not degraded by the
proteasome.31–36 In addition, Fumagalli et al.24 have shown
that, without nucleolar stress in hepatocytes, haploinsuffi-
ciency in RPS6, RPS23 and RPL7a leads to an upregulation
of RPL11. Recently, Dutt et al.,30 has shown that RPS14 or
RPS19 depletion after CD34þ infection with specific shRNAs
leads to p53 activation without nucleolar disruption but
through HDM-2 binding to RPL11. In DBA patient CD34þ

cells, it is too speculative at this time to define how a mutation
in a RP gene leads to an activation of p53 and if HDM-2 is
involved but our future studies will focus on deciphering these
mechanisms. However, we were able to show that p53 is
activated in RPL11-mutated DBA patients and in native
CD34þ cells infected by shRPL11, which in both cases led
to a large decrease in RPL11 protein expression level. As
such, it appears that p53 can be activated without increased
RPL11 expression level. There is preliminary evidence that
p53 may be activated by different mechanisms during a
ribosomal stress, one through the RPL11-HDM2-p53 pathway
and the other through p38 activation. It is thus possible that
p53 activation mechanism(s) following RPS19 or RPL11
depletion may not be the same, which may account for the
observed differences in the extents of p53 activation.

In summary, our findings imply that deficiencies in RPS19
and RPL11 activate p53 to different extents, leading to
differential effects on erythropoiesis. Furthermore, our find-
ings have enabled us to establish that increased level of
RPL11 expression is not necessary to activate p53 in
erythroid cells. An unanswered question is whether the entire
erythroid phenotype of DBA is related to increased expression
levels of p53 or if additional p53-independent mechanisms
may also have a role in the pathogenesis of the disease.

Materials and Methods
Population. A total of 15 unrelated patients affected with DBA and 15
hematologically normal individuals were studied. The DBA patients are registered
in the French DBA registry. DBA was diagnosed according to the established
criteria.1 All cases were reviewed in detail at the time of analysis, and Table 1
shows the biological and clinical data of the 15 DBA patients, which have been
obtained from the institutions and physicians responsible for the patient’s
management. Informed consent was obtained in accordance with the Declaration
of Helsinski. Human umbilical cord blood was collected from normal full-term
deliveries after maternal informed consent was approved according to institutional
guidelines (AP-HP, Paris, France).

Lentiviral vector construction, production and cell infection.

shRNA cloning. The RPS19 shRNA used in the present study was previously
described by Flygare.25 Three different shRNA sequences against RPL11 were

synthesized (Eurogentec, Angers, France) and cloned into a pBlue Script
containing the human H1 promoter (Généthon, Evry, France). The H1-shRPS19C,
H1-shRPL11A, -L11B, -L11C and H1-SCR (scramble control sequence) cassettes
were cloned into a lentiviral vector, pRRLsin-PGK-eGFP-WPRE (Généthon;
Supplementary File 1A). The sequence of the various cloned fragments was
confirmed by cDNA sequencing. Oligonucleo-hairpins sequences of RPS19 and
RPL11 short hairpins (shRNAs) used in the present study are available upon
request. The p53 shRNA sequence was described Brummelkamp et al.37 We
modified the pRRLsin-PGK-eGFP-WPRE including a Cherry sequence instead of
eGFP to collect by cell sorting the positive cells for both GFP (shRPS19- and
shRPL11-infected cells) and cherry (shp53-infected cells). pm-Cherry C1 plasmid
(Clonetech, Saint-Germain-en-Laye, France) was digested by SgrAI/XmaI then
religated. The modified Cherry cassette was amplified by PCR introducing SalI/
BamHI restriction sites and used as replacement of the SalI/BamHI GFP cassette
of pRRL-PGK GFP. Blunt vector from a XhoI digest of pRRL-PGK-Cherry and
blunt inserts of pH1-shRNAp53 from a XhoI/EcoRI digest of SuperRetro-pH1-
shp53-PGK-Puro were ligated using standard ligation protocol.

Lentiviral production. Lentiviral stocks were prepared as previously described38

and stored at � 80 1C. Titers of viral particles were determined by quantifying
the number of GFP or mCherry-positive cells following infection of HEK 293
T cell lines.

Cell infection and culturing of UT-7 cells. UT-7 cells were infected at day 1 at
multiplicity of infection (MOI) of 10 in Iscove’s 4 modified Dulbecco’s media (IMDM;
Invitrogen, Cergy-Pontoise, France), 10% of fetal bovine serum (FBS) and 5 ng/ml
granulocyte macrophage colony-stimulating factor. GFP- or mCherry-positive cells
were sorted 2 days later using a FACSVantage Cell Sorter (Becton Dickinson
Biosciences, Le Pont de Claix, France). The effectiveness of shRNA in
downregulating specific mRNA and the protein was assessed 2 days following
isolation of sorted cells (Supplementary File 1B and C).

Erythroid cell proliferation and differentiation of CD34þ cells,
apoptosis and cell cycle analysis. CD34þ cells from peripheral blood of
DBA patients and control subjects or cord blood were isolated by the
immunomagnetic technique (Miltenyi Biotec, Paris, France). Purified CD34þ

cells from DBA patients and controls were cultured in IMDM medium (Invitrogen)
containing 1% L-glutamine (Invitrogen), 1% penicillin–streptomycin (Invitrogen),
a-monothioglycerol (Sigma-Aldrich, Lyon, France), 1.5% bovine serum albumin
(Stemcell Technologies, Sheffield, UK), iron-saturated transferrin (Sigma-Aldrich)
and 2% liposomes, 50 ng/ml stem cell factor (SCF), 1 U/ml interleukin-3 (IL-3), 1 U/ml
EPO and 10% FBS. At day 7, cultures were switched to the same medium but with
30% FBS (from D7 to D12). For some DBA patients, we performed in vitro
erythroid cultures in two phases: a first phase of 7 days in methylcellulose with
EPO (3 U/ml), SCF (50 ng/ml) and IL-3 (30 U/ml) and a second phase in liquid
culture.

For lentiviral infection, CD34þ cells were cultured for 2 days in the presence of
10% FBS, 100 U/ml IL-3, 10 ng/ml IL-6, 25 ng/ml SCF, 10 ng/ml thrombopoitein and
10 ng/ml Flt3-L (Fms-related tyrosine kinase 3-ligand). A first infection was then
performed at a 50 MOI. In the case of shRNA-RPS19C, a second infection was
performed 6 h after the first infection (Supplementary File 2). Cells were cultured for
2 more days and GFP-positive cells were sorted using the FACSDIVA Cell Sorter.
Sorted cells were switched to the same IMDM medium with SCF (50 ng/ml), IL-3
(1 U/ml) and EPO at 1 U/ml till D7 when the FBS concentration was increased to
30% (from D7 to D14).

Viable cells were counted using the trypan blue dye exclusion test as a function of
time in culture. Following May–Grünwald–Giemsa staining, extent of terminal
erythroid differentiation was evaluated by morphological assessment.

Erythroid differentiation was also evaluated by flow cytometry (FACS Canto,
Becton Dickinson Biosciences). Cells were immunophenotyped from D7 to D14
using several antibodies: phycoerythrin (PE)-coupled anti-GPA (Caltag, Burlingame,
CA, USA), allophycocyanin (APC)-conjugated anti-CD36, PerCP-cy5.5-conjugated
anti-CD34, APC-anti-CD71 (Becton Dickinson Biosciences) and PC7-conjugated
anti-CD34 (Beckman Coulter, Villepinte, France). Isotype controls were obtained
from Becton Dickinson Biosciences.

For determining apoptosis, cells were stained with PE-conjugated Annexin-V
(Becton Dickinson Biosciences) and with DAPI (Sigma-Aldrich, Saint-Quentin-
Fallavier, France) according to the manufacturer’s protocol. In addition, in DBA
patients, the TUNEL method was performed according to the manufacturer’s
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protocol (kit ApopDETEK, DAKOCytomation, Enzo Diagnostics Inc., Farmingdale,
NY, USA) on the cells isolated from erythroid colonies and the percentage of
apoptotic cells was determined based on microscopic counting of 200 cells. Cell
cycle was studied at day 7, 10 and D12 following propidium iodide staining (Sigma-
Aldrich) by flow cytometry.

Real-time quantitative RT-PCR.

RNA extraction. Total RNA was extracted using TRIzol reagent (Invitrogen) and
treated with RNAse-free DNAse (Qiagen, Courtaboeuf, France). The quality of the
RNA was verified on an agarose gel and quantified with a Nanodrop
spectrophotometer (ND-1000 UV-Vis; Thermo Scientific, Wilmington, DE, USA).

Reverse transcription-PCR. cDNA was synthesized from extracted RNA with
SuperScript II RNase H-Reverse transcriptase kit (Invitrogen).

Real-time quantitative RT-PCR. Primers and internal probes for quantitative
reverse-transcriptase (QRT)-PCR were designed using Primer Express Software
(Perkin-Elmer Applied Biosystems, Foster city, CA, USA) and are available upon
request. PCR was carried out in the ABI Prism GeneAmp 5700 Sequence
Detection System (Perkin-Elmer) using the TaqMan Universal PCR Master Mix
(ABI) containing the specific primers (1.5mM) and specific probe (0.1mM). The
expression level of each gene was normalized using three housekeeping genes –
hypoxantine-guanine-phosphoribosyl-transferase (HPRT) gene, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) gene and b2 microglobulin (b2 micro-
globulin) gene.

Western blot analysis. Each pellet of 50 000 cells from the DBA patients
and 125 000 cells from shRNA-infected CD34þ cells was lysed in Laemmli buffer
(100 mM Tris pH 6.8, 10% glycerol, 4% SDS, 0.2% blue Bromophenol, 20 mM
dithiothreitol), sonicated (five times, 15 s) in ice water and boiled for 5 min.
Samples were run on a Tris glycine 10% SDS-PAGE resolving gel. Following
electrophoresis, proteins were transferred onto a PVDF Hybond-P membrane
(GE Healthcare Europe, Orsay, France) and stained with Ponceau S solution
(Sigma-Aldrich, Lyon, France) to assess quantity of transferred proteins. Following
washing of the membranes with Tris-buffered saline with 1% Tween-20 (TBST
1� ), membranes were soaked in blocking buffer (4% milk, 1% bovine serum
albumin, 0.2% sodium azide in TBST 1� ) for 1 h and then immunolabeled
overnight at 4 1C with the different antibodies. Antibodies used for immunoblots
were as follows: p53, phospho p53 (ser15), caspase 3, cleaved caspase 3, Bcl-XL,
PARP antibodies (all rabbit polyclonal antibodies from Cell Signaling, Ozyme,
Saint Quentin Yvelines, France); p21 (2947) (rabbit monoclonal, Cell Signaling,
Danvers, MA, USA), Bax antibody (rabbit polyclonal, Abcam, Cambridge, MA,
USA) and b-actin antibody (Ac-15; Sigma-Aldrich). The polyclonal chicken RPS19
antibody,39 the monoclonal RPS19 mouse antibody kindly provided by F Loreni40

or the commercial antibodies against RPS19 (monoclonal mouse SC100836,
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA) and mouse monoclonal
57 643, Abcam), the antibody against RPL11 were used at the appropriate dilution.
Following several washes with TBST 1� , membranes were incubated with
appropriate secondary antibodies for 1 h. After several washes with TBST 1� ,
the membranes were soaked in ECL solution (GE Healthcare) and the expression
level of various proteins determined on the Amersham hyperfilm ECL
(GE Healthcare).

Statistical analysis. Data are presented as the mean±standard error of the
mean (±S.E.M.) or standard deviation (S.D.). Student’s t-test was used to
compare the data from different populations.
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in the methylcellulose culture (both from Hôpital Bicêtre, Le Kremlin-Bicêtre,
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