
Human neuroblastoma cells with acquired resistance
to the p53 activator RITA retain functional p53 and
sensitivity to other p53 activating agents

M Michaelis1,10, F Rothweiler1, B Agha1, S Barth1,2, Y Voges1, N Löschmann1, A von Deimling3,4, R Breitling5,6, H Wilhelm Doerr1,
F Rödel7, D Speidel8,9 and J Cinatl Jr*,1

Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo
p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently
when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted
to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all
RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their
sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 lM to nutlin-3 resulted in p53
mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and
irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the
expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-
adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3
sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted
cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-
adapted cells.
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p53 is activated in response to DNA damage and other stress
stimuli and can cause cell-cycle inhibition, DNA repair, and
cell death, respectively. Most cytotoxic anticancer drugs exert
their effects under the involvement of p53 activation if the
functional gene is expressed, which is the case in about 50%
of all tumours. In addition, a number of compounds that were
designed to activate p53 in cancer cells without causing DNA
damage (‘non-genotoxic p53 activators’) are under preclinical
and clinical investigation as anticancer drugs.1,2 Given that
therapeutically applied DNA damage may favour chromo-
somal instability, mutations, and resistance formation and also
support the development of secondary malignancies through
introduction of additional mutations, therapeutic strategies
that induce apoptosis and growth arrest in a non-genotoxic
way have been considered very promising.

Some of the non-genotoxic p53 activators, including the
molecules nutlin-3 and RITA, interfere with the interaction of

p53 and its endogenous regulator murine double minute 2
(MDM2, in humans also called HDM2). MDM2 is a ubiquitin
E3 ligase that binds to p53. Thereby, MDM2 impairs the
transactivation function of p53 and targets it for proteasomal
degradation. Consequently, small molecules that impair or
disrupt the p53/MDM2 interaction result in the accumulation of
transcriptionally active wild-type p53. It has to be mentioned
that although designated as ‘non-genotoxic’ p53 activators,
both RITA and nutlin-3 have been shown to induce DNA
damage in the meantime.3–5

Recently, we and others have shown that treatment of cancer
cells with nutlin-3 induces p53 mutations in p53 wild-type cancer
cells from different entities.6,7 Moreover, p53 wild-type cancer cell
adaptation to nutlin-3 results in a multi-drug resistance phenotype
and decreased cellular sensitivity to irradiation.7,8 Repeated
adaptation of a single p53 wild-type cell-derived clone of the
neuroblastoma cell line UKF-NB-3 to nutlin-3 resulted in the
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establishment of sub-lines harbouring various p53 mutations,
indicating nutlin-3 to induce de novo p53 mutations.7

However, it remains unclear whether the induction of p53
mutations and the emergence of multi-drug resistance are a
specific feature of nutlin-3 treatment or a common attribute of
the whole class of agents that interfere with the interaction of
MDM2 and p53.

In this study, we investigated the long-term effects of the
non-genotoxic p53 activator RITA that inhibits the p53/MDM2
interaction by binding to p53. We employed the same wild-
type p53 expressing neuroblastoma cell line UKF-NB-3 that
we have used previously to study adaptation to nutlin-3.7

Here, we show that – unlike the MDM2 inhibitor nutlin-3
continuous treatment with RITA does not induce loss-of-
function mutations in the TP53 gene. In further contrast to
nutlin-3 treatment, cells adapted to RITA displayed no or
minor multi-drug resistance phenotypes and a substantially
lower degree of resistance to irradiation. Moreover, RITA-
adapted cells remain responsive to nutlin-3.

Results

UKF-NB-3 neuroblastoma cells adapted to RITA retain
functional p53. UKF-NB-3 cells were adapted to growth in
the presence of RITA 10 mM in 11 independent experiments.
The resulting UKF-NB-3 sub-lines were designated as UKF-
NB-3rRITA10 mM as well as UKF-NB-3rRITA10 mMI–X (Table 1).
Adaptation was performed by UKF-NB-3 cell cultivation in
increasing RITA concentrations as described before for
cancer cell adaptation to other drugs.7,9 Only one RITA-
resistant UF-NB-3 sub-line (UKF-NB-3rRITA10 mMIV) carried
a (heterozygote A76T) p53 mutation (Table 1).

Codon 76 is located in the proline-rich domain of p53, a
region that is rarely affected by mutations in cancer. Indeed,

only one study has reported an A76T mutation that was found
in benign breast tissue (Kandel et al11; http://www-p53.iarc.fr/).
Interestingly, UKF-NB-3rRITA10mMIV cells were as sensitive to
nutlin-3 treatment as parental UKF-NB-3 cells (Table 1) with
nutlin-3 treatment resulting in the induction of p53 response
gene expression in these cells (Figure 1). In accord with a study
in yeast,11 this suggests that the observed A76T mutation has
no or only minimal impact on the activity of p53. Collectively,
these data demonstrate that adaptation to RITA does not
promote inactivation of p53 by mutation. In strong contrast, we
have shown recently that adaptation to nutlin-3 in the same
cell line has resulted in inactivating mutations in 13 out of 20
sub-lines.7

Previously, we have shown that the G245C p53-mutated
nutlin-3-adapted UKF-NB-3 sub-line UKF-NB-3rNutlin10 mM

Table 1 Sensitivity of RITA- and nutlin-3-adapted UKF-NB-3 sub-lines to anticancer drugs

Concentrations that decrease cell viability by 50% (IC50)

Cell line p53 status RITA (lM) Nutlin-3 (lM) Vincristine (ng/ml) Cisplatin (ng/ml)

UKF-NB-3 wta 0.10±0.03 1.53±0.30 0.20±0.04 99.8±24.1
UKF-NB-3rRITA10 mM wt 12.57±1.25 0.97±0.33 0.32±0.09 177.1±41.7
UKF-NB-3rRITA10 mMI wt 8.32±1.32 1.05±0.08 0.23±0.08 73.4±14.0
UKF-NB-3rRITA10 mMII wt 5.99±1.80 1.42±0.10 0.25±0.06 116.3±17.6
UKF-NB-3rRITA10 mMIII wt 10.79±0.70 1.89±0.34 0.40±0.10 159.3±36.8
UKF-NB-3rRITA10 mMIV A76Tb,c 6.20±2.37 1.62±0.07 0.22±0.08 98.1±6.1
UKF-NB-3rRITA10 mMV wt 9.61±1.96 1.76±0.06 0.22±0.05 106.9±24.7
UKF-NB-3rRITA10 mMVI wt 11.00±2.94 1.36±0.10 0.31±0.07 114.4±21.8
UKF-NB-3rRITA10 mMVII wt 9.05±2.09 1.77±0.14 0.27±0.06 154.0±20.1
UKF-NB-3rRITA10 mMVIII wt 6.18±0.16 1.28±0.13 0.25±0.03 107.4±12.9
UKF-NB-3rRITA10 mMIX wt 13.63±2.54 1.88±0.28 0.29±0.06 103.4±5.4
UKF-NB-3rRITA10 mMX wt 7.93±1.68 2.01±0.47 0.34±0.05 124.8±30.8
UKF-NB-3rNutlin10mM G245Cd 0.59±0.19 36.7±2.9 1.27±0.20 303.1±14.3
UKF-NB-3rNutlin10mMI wt 0.15±0.03 34.0±4.8 0.70±0.09 191.7±7.5
UKF-NB-3rNutlin10mMII wt 0.50±0.14 40.0±14.0 1.00±0.21 150.5±14.5
UKF-NB-3rNutlin10mMIII wt 0.15±0.05 35.2±10.1 0.59±0.03 150.5±14.5
UKF-NB-3rNutlin10mMIV wt 0.17±0.03 33.6±9.9 0.57±0.05 145.5±15.9
UKF-NB-3rNutlin10mMV wt 0.12±0.04 34.3±11.6 0.72±0.07 112.2±9.7
UKF-NB-3rNutlin10mMVI P278Ac 0.10±0.02 35.3±14.2 1.07±0.11 150.0±13.3
UKF-NB-3rNutlin10mMVII D281Gc 0.40±0.05 40.5±13.9 0.62±0.02 180.9±39.6
UKF-NB-3rNutlin10mMVIII D281Gc 0.63±0.20 40.9±4.5 1.07±0.18 182.6±30.6
UKF-NB-3rNutlin10mMIX D281Gc 0.48±0.12 47.2±5.1 0.95±0.15 312.6±32.8

aWild-type. bType of mutation. cHeterozygote. dHomozygote
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Figure 1 p53 activation in A76T p53-mutated UKF-NB-3rRITA10mMIV cells.
Cells were treated with RITA (10 mM) or nutlin-3 (10mM) for 24 h and investigated
by western blot for the expression of p53 target genes
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retains its resistance phenotype after multiple passages in the
absence of nutlin-3.7 Here, we cultivated the investigated
RITA-adapted UKF-NB-3 sub-lines for 10 passages in the
absence of RITA. As a control, we also cultivated 10 nutlin-3-
adapted UKF-NB-3 sub-lines (five p53-mutated, five p53
wild-type) for 10 passages without adding nutlin-3. All of
the nutlin-3-adapted cell lines remained nutlin-3 resistant,
independently of their p53 status. In contrast, 2 out of the
11 RITA-adapted cell lines (UKF-NB-3rRITA10 mMIII, UKF-NB-
3rRITA10mMVII) retrieved their RITA sensitivity (Supplementary
Table 1).

RITA-adapted cells remain sensitive to nutlin-3. Next, we
determined cross-resistance profiles between the RITA-
adapted UKF-NB-3 sub-lines and the nutlin-3-adapted
UKF-NB-3 sub-lines (Table 1). The RITA concentrations that
decreased the viabilities of the RITA-adapted cell lines by
50% (IC50) were about 60–120-fold higher than the RITA
IC50 in UKF-NB-3 cells (0.10mM). None of the RITA-adapted
sub-lines (including the A76T p53-mutated sub-line UKF-NB-
3rRITA10 mMIV) showed cross-resistance to nutlin-3. More-
over, when the RITA-adapted UKF-NB-3 cell line UKF-NB-
3rRITA10 mM was adapted to nutlin-3 in six independent
experiments, we found p53 mutations in four sub-lines
whereas only two sub-lines retained a wild-type p53
sequence (Supplementary Table 2). One nutlin-3-adapted
sub-line of UKF-NB-3rRITA10 mM harboured a heterozygote
N239D mutation, one a heterozygote R280I mutation, and
two harboured heterozygote C277F mutations. These results
demonstrate that, even after adaptation to the p53 activator
RITA, exposure to the MDM2 inhibitor nutlin-3 exerts a strong
selection pressure favouring p53 mutations.

Four out of five p53-mutated nutlin-3-adapted UKF-NB-3
sub-lines displayed decreased sensitivity to RITA, supporting
the importance of wild-type p53 for RITA-induced toxicity. IC50

values in these sub-lines ranged from 0.40 to 0.63 mM
(compared with 0.10 mM in the parental UKF-NB-3), whereas
only one p53-mutated sub-line (UKF-NB-3rNutlin10 mMVI) was
as sensitive to RITA as the parental cells. Consistently, all but
one (UKF-NB-3rNutlin10 mMII) of the nutlin-3-adapted sub-lines
expressing wild-type p53 were as sensitive to RITA as the
parental cells (Table 1).

RITA-adapted cells display a less pronounced resis-
tance phenotype than nutlin-3-adapted cells. Adaptation
of UKF-NB-3 cells to nutlin-3 results in decreased sensitivity
to a panel of different cytotoxic drugs and to irradiation as
determined in the p53 (G245C)-mutated sub-line UKF-NB-
3rNutlin10 mM.7 To test whether adaptation to RITA is
associated with a similar multi-drug resistance phenotype,
we compared the sensitivities of the 11 RITA-adapted
UKF-NB-3 sub-lines and 10 additional nutlin-3-adapted
UKF-NB-3 sub-lines to vincristine (VCR) and cisplatin
(CDDP; Table 1). Only two out of the 11 RITA-adapted
cell lines displayed significantly increased (Po0.05) VCR
IC50 values (UKF-NB-3rRITA10 mMIII, 0.40 ng/ml; UKF-NB-
3rRITA10 mMX, 0.34 ng/ml) relative to parental UKF-NB-3 cells
(0.20 ng/ml), whereas the majority of RITA-adapted cell lines
remained VCR sensitive. In contrast, all of the 10 nutlin-3-
adapted UKF-NB-3 cell lines showed significantly enhanced

VCR IC50 values ranging from 0.57 to 1.27 ng/ml. Similar
results were obtained for CDDP: three RITA-adapted sub-
lines were significantly less sensitive to CDDP (Po0.05;
IC50s: UKF-NB-3rRITA10mM, 177.1ng/ml; UKF-NB-3rRITA10mMIII,
159.3 ng/ml; UKF-NB-3rRITA10 mMVII, 154.0 ng/ml) than the
UKF-NB-3 cells (99.8 ng/ml), whereas all nutlin-3-adapted
sub-lines showed significantly enhanced IC50 values ranging
from 145.5 to 312.6 ng/ml with the exception of UKF-NB-
3rNutlin10 mMV (112.2 ng/ml) (Table 1).

Interestingly, the multi-drug resistance phenotype observed
in the nutlin-3-adapted UKF-NB-3 sub-lines appears more
similar to the multi-drug resistance phenotypes observed in
cell lines adapted to cytotoxic drugs than the low-level cross-
resistance patterns observed in the RITA-adapted sub-lines.
Investigation of the sensitivity of a panel of UKF-NB-3 sub-
lines adapted to the cytotoxic agents CDDP, doxorubicin
(DOX), melphalan (MEL), or VCR displayed generally
decreased sensitivity to CDDP and VCR (Supplementary
Table 3).

RITA-adapted cells display lower irradiation resistance
than nutlin-3-adapted cells. Previously, we showed that
the nutlin-3-adapted sub-line UKF-NB-3rNutlin10 mM is highly
resistant to irradiation when compared with the parental
UKF-NB-3 cell line.7 Here, the investigated RITA- and nutlin-
3-adapted cell lines were irradiated with 3, 5, or 8 Gy,
respectively, and cell viability was determined by the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay 48 h post-irradiation. Across all doses, the sensitivity to
irradiation was substantially lowered in all cell lines adapted
to nutlin-3 when compared with the parental UKF-NB-3 cells
(Table 2). For example, the cell viability (expressed relative
to non-irradiated control) ranged from 64.64±2.36% (UKF-
NB-3rNutlin10mMV) to 86.73±4.22% (UKF-NB-3rNutlin10mMIII)
after 5 Gy irradiation whereas it was 0.36±0.26% for
UKF-NB-3 cells. In this regard, nutlin-3-adapted cells again
behaved similar to UKF-NB-3 sub-lines adapted to genotoxic
agents (CDDP, DOX, and VCR) that also showed significant
resistance to radiation (Supplementary Table 4). Of note,
there was no correlation between the p53 status (wild type or
mutant) and irradiation sensitivity in the nutlin-3-adapted cell
lines (Table 2).

In contrast, RITA-adapted cells showed only moderate
resistance to irradiation with the observed effects being
significantly less profound than in the nutlin-3- or cytotoxic
drug-adapted cells. After 5 Gy irradiation, viabilities ranged
from 3.89±2.30% (UKF-NB-3rRITA10 mMIX) to 38.16±4.37%
(UKF-NB-3rRITA10 mMII) (Table 2).

RITA induces p53 activation and apoptosis in UKF-NB-3
cells. The effects of RITA on p53 activation and apoptosis
were studied in UKF-NB-3 cells, the RITA-adapted sub-line
UKF-NB-3rRITA10 mM (harbouring wild-type p53), and the
nutlin-3-adapted sub-line UKF-NB-3rNutlin10 mM (harbouring
G245C mutant p53) upon treatment with RITA and nutlin-3,
respectively (Figure 2). In the parental cells, RITA 10 mM as
well as nutlin-3 10 mM induced accumulation and phospho-
rylation of p53 at serine 15, which both are hallmarks of p53
activation. In addition, both drugs increased expression of
the p53 target genes CDKNA1 (encoding for p21), BAX,
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BBC3 (encoding for PUMA), and MDM2 with nutlin-3 clearly
exerting more pronounced effects. These results confirm
that, as expected, both drugs activate wild-type p53. In line
with their p53 status (mutated) neither nutlin-3 nor RITA
induced a p53 response in UKF-NB-3rNutlin10 mM cells.
However, nutlin-3 treatment resulted in a robust p53
response in UKF-NB-3rRITA10 mM cells (Figure 2a) indicating
that adaptation to RITA does not abolish the functionality of
p53. These data show that RITA-adapted cells although
resistant to the p53 activator RITA remain sensitive to p53
activation by the MDM2 inhibitor nutlin-3.

Both substances induced apoptosis in UKF-NB-3 cells as
indicated by Poly (ADP-ribose) polymerase (PARP) cleavage
(Figure 2b) and caspase 3 activation (Figure 2d). Consistent
to the IC50 values measured before (Table 1) RITA retained its
ability to elicit apoptosis in UKF-NB-3rNutlin10 mM cells.
Similarly, nutlin-3 caused apoptosis in UKF-NB-3rRITA10 mM

cells (Figures 2b and c).
To corroborate the importance of wild-type p53 for

apoptosis induced by nutlin-3, we had previously shown that
transduction of UKF-NB-3rNutlin10 mM cells with a lentiviral
vector encoding for wild-type p53 (UKF-NB-3rNutlin10 mMwtp53)
resulted in their re-sensitisation to nutlin-3.7 Similarly,
wtp53-re-expressing UKF-NB-3rNutlin10 mMwtp53 cells were
significantly more sensitive to RITA when compared with
UKF-NB-3rNutlin10 mM cells (Table 3), suggesting that wild-
type p53 function accounts for the major part of RITA-induced
cytotoxicity. Collectively, these experiments demonstrate that
RITA and nutlin-3 both elicit apoptosis via p53.

To characterise the differences underlying the different
phenotypes of UKF-NB-3 cells adapted to RITA and nutlin-3,
respectively, we looked at the expression level of selected
antiapoptotic factors. UKF-NB-3rRITA10 mM cells showed an
enhanced expression of the antiapoptotic proteins cIAP1 and

cIAP2 whereas UKF-NB-3rNutlin10 mM cells expressed
increased levels of the antiapoptotic proteins cIAP1, Bcl-2,
Mcl-1, and survivin compared with UKF-NB-3 (Figure 3).

Transcriptomics analysis indicates a closer relationship
between UKF-NB-3 cells and RITA-adapted cells than
between UKF-NB-3 and nutlin-3-adapted cells. Next, we
analysed global cellular gene expression at the mRNA level
using gene microarray in UKF-NB-3, UKF-NB-3rNutlin10 mMII,
UKF-NB-3rNutlin10 mMV, UKF-NB-3rNutlin10 mMVI, UKF-NB-
3rNutlin10mMVIII, UKF-NB-3rRITA10mMII, UKF-NB-3rRITA10mMIII,
and UKF-NB-3rRITA10 mMIV cells, using three biological
replicates for each cell line. In general, nutlin-3-adapted cells
showed a larger number of statistically significant gene
expression changes compared with the parental line than the
RITA-adapted cells (Table 4). The numbers of differentially
expressed genes were 6465 for the comparison UKF-NB-3
versus nutlin-3-adapted sub-lines and 1495 for the comparison
UKF-NB-3 versus RITA-adapted sub-lines (false discovery
rate (FDR) o0.05 after correction for multiple testing). Also in
the individual comparisons of the drug-adapted cell lines
versus UKF-NB-3, the nutlin-3-adapted cell lines showed
generally higher numbers of differentially expressed genes
(4831–6575) compared with the RITA-adapted lines
(1985–3606). The only exception was UKF-NB-3rNutlin10 mMII
(2528 differentially expressed genes; Table 4).

In a hierarchical clustering analysis, the parental UKF-NB-3
cell line clustered together with the RITA-adapted cell lines
whereas the nutlin-3-adapted cells formed a separate cluster
(Figure 4). Within the UKF-NB-3 and RITA-adapted cell cluster,
UKF-NB-3 clustered together with UKF-NB-3rRITA10 mMII,
the cell line with the lowest number of genes differentially
expressed to UKF-NB-3. Looking at the correlation distances,
the nutlin-3-adapted cells appear to be slightly more

Table 2 Sensitivity of RITA- and nutlin-3-adapted UKF-NB-3 sub-lines to irradiation. Cell viability was determined 48 h post-irradiation by MTT assay

Cell viability (% non-irradiated control)

Cell line p53 status 3Gy 5Gy 8Gy

UKF-NB-3 wta 7.79±3.54 0.36±0.26 0
UKF-NB-3rRITA10 mM wt 48.07±5.21 25.90±2.25 13.91±2.36
UKF-NB-3rRITA10 mMI wt 22.30±2.37 14.70±2.47 9.02±1.68
UKF-NB-3rRITA10 mMII wt 45.98±5.78 38.16±4.37 12.73±2.52
UKF-NB-3rRITA10 mMIII wt 34.64±2.69 26.52±3.29 9.38±1.56
UKF-NB-3rRITA10 mMIV A76Tb,c 16.13±2.76 9.40±1.02 5.45±1.73
UKF-NB-3rRITA10 mMV wt 37.52±3.39 23.17±1.63 7.22±1.34
UKF-NB-3rRITA10 mMVI wt 32.36±5.36 14.66±1.46 12.89±1.38
UKF-NB-3rRITA10 mMVII wt 25.03±5.45 16.23±1.20 10.71±2.18
UKF-NB-3rRITA10 mMVIII wt 26.40±6.20 20.67±1.99 16.82±1.94
UKF-NB-3rRITA10 mMIX wt 14.39±2.75 3.89±2.30 0
UKF-NB-3rRITA10 mMX wt 41.97±4.55 21.95±4.17 3.32±0.49
UKF-NB-3rNutlin10mM G245Cd 89.44±5.08 85.69±8.10 68.92±3.54
UKF-NB-3rNutlin10mMI wt 74.19±3.41 71.28±4.36 59.28±8.74
UKF-NB-3rNutlin10mMII wt 81.77±15.00 74.44±10.03 70.12±19.47
UKF-NB-3rNutlin10mMIII wt 86.79±3.63 86.73±4.22 68.21±18.25
UKF-NB-3rNutlin10mMIV wt 88.40±1.93 85.60±3.49 60.05±14.16
UKF-NB-3rNutlin10mMV wt 72.45±10.85 64.64±2.36 55.63±8.64
UKF-NB-3rNutlin10mMVI P278Ac 81.68±8.58 74.23±2.14 72.33±8.98
UKF-NB-3rNutlin10mMVII D281Gc 77.86±11.98 69.04±10.54 42.03±7.64
UKF-NB-3rNutlin10mMVIII D281Gc 84.25±8.96 67.99±4.88 64.47±6.17
UKF-NB-3rNutlin10mMIX D281Gc 83.46±10.63 83.51±4.42 44.32±8.18

aWild-type. bType of mutation. cHeterozygote. dHomozygote
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homogeneous than the RITA-adapted cells although the
nutlin-3-adapted cells consist of two cell lines displaying
loss-of-function p53 mutations (UKF-NB-3rNutlin10mMVI, UKF-
NB-3rNutlin10mMVIII) and two that harbour wild-type p53 (UKF-
NB-3rNutlin10mMII, UKF-NB-3rNutlin10mMV) whereas all three
RITA-adapted cell lines harbour functional p53. Within
the cluster containing the nutlin-3-adapted cell line,

p53 wild-type cells cluster together with p53-mutated cells.
UKF-NB-3rNutlin10 mMII (wild-type p53) clusters together
with UKF-NB-3rNutlin10 mMVIII (p53-mutated), UKF-NB-3r

Nutlin10 mMV (wild-type p53) together with UKF-NB-3r

Nutlin10 mMVI (p53-mutated).
5363 genes were found to be differentially expressed

(FDRo0.05) in at least one comparison of UKF-NB-3 versus
RITA-adapted UKF-NB-3 cell line. In all, 2030 genes
were differentially expressed between UKF-NB-3 and two
RITA-adapted cell lines, and 663 genes between UKF-NB-3
and all three investigated RITA-adapted cell lines.
A total of 8891 genes were differentially regulated between
UKF-NB-3 and at least one nutlin-3-adapted UKF-NB-3 cell
line, 5685 consistently between UKF-NB-3 and two nutlin-3-
adapted cell lines, 3592 between UKF-NB-3 and three nutlin-
3-adapted cell lines, and 1597 genes between UKF-NB-3
and all four investigated nutlin-3-adapted cell lines
(Supplementary Table 5). 17.96% (1597/8891) of the genes
differentially expressed between UKF-NB-3 and any of its

Table 3 Sensitivity of UKF-NB-3 cells, UKF-NB-3rNutlin10 mM cells, UKF-NB-
3rNutlin10mM cells transduced with a lentiviral vector encoding wild-type p53
(UKF-NB-3rNutlin10mMwtp53), and UKF-NB-3rNutlin10mM cells transduced with a
control vector (UKF-NB-3rNutlin10mMcontrol) to RITA or nutlin-3 indicated by the
concentration that reduces cell viability by 50% (IC50) indicated by MTT assay
after a 5 day treatment period

Cell line RITA (lM) Nutlin-3 (lM)

UKF-NB-3 0.11±0.02 1.47±0.15
UKF-NB-3rNutlin10 mM 0.62±0.04 32.83±2.91
UKF-NB-3rNutlin10 mMwtp53 0.24±0.03 5.02±1.73
UKF-NB-3rNutlin10 mMcontrol 0.58±0.03 36.19±3.08
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Figure 3 Expression of apoptosis-associated proteins in UKF-NB-3, UKF-NB-
3rNutlin10mM, and UKF-NB-3rRITA10mM cells

Table 4 Numbers of genes differentially expressed relative to UKF-NB-3 (false
discovery rate (FDR)o0.05 or o0.01 after correction for multiple testing) in
RITA- or nutlin-3-adapted UKF-NB-3 sub-lines as determined by microarray
measurement of mRNA abundance

Comparison
UKF-NB-3 versus

Differentially
expressed

genes
(FDRo0.05)

Differentially
expressed

genes
(FDRo0.01)

All sub-lines 1360 520
All RITA-resistant sub-lines 1495 676
All nutlin-3-resistant sub-lines 6465 4090
UKF-NB-3rRITA10mMII 1985 374
UKF-NB-3rRITA10mMIII 2465 337
UKF-NB-3rRITA10mMIV 3606 817
UKF-NB-3rNutlin10 mMII 2528 75
UKF-NB-3rNutlin10 mMV 6575 2842
UKF-NB-3rNutlin10 mMVI 4831 1148
UKF-NB-3rNutlin10 mMVIII 5830 2004
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Figure 2 Influence of RITA and nutlin-3 on p53 activation and apoptosis in
UKF-NB-3, UKF-NB-3rNutlin10mM, and UKF-NB-3rRITA10mM cells. (a–b) Cells were
treated with RITA (10 mM) or Nutlin-3 (10 mM) for 24 h and investigated by western
blot for the expression of p53 target genes (a) or for the formation of the cleaved
form of PARP (cPARP) (b). b-actin served as loading control. (c) Cells were treated
with RITA (10mM) or Nutlin-3 (10 mM) for 24 h. Caspase 3 activation was
determined by Caspase-Glo 3/7 Assay. *Po0.05
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nutlin-3-adapted sub-lines were differentially expressed
between UKF-NB-3 and all four investigated nutlin-3-adapted
sub-lines whereas 12.36% (663/5363) of the genes differen-
tially expressed between UKF-NB-3 and any of its RITA-
adapted sub-lines were differentially expressed between
UKF-NB-3 and all three investigated RITA-adapted sub-lines.

Discussion

The MDM2 inhibitor nutlin-3 has been shown to induce p53
mutations in different p53 wild-type cell types.6,7 In all, 13 out
of 20 nutlin-3-adapted sub-lines of the wild-type p53 neuro-
blastoma cell line UKF-NB-3 harboured p53 mutations.7 Here,
we established 11 UKF-NB-3 sub-lines adapted to growth in
the presence of RITA, a drug that interferes with the
interaction of p53 and MDM2 by binding to p53.2,12 The
chemical structures of RITA and nutlin-3 are shown in
Supplementary Figure 1. Ten sub-lines harboured wild-type
p53, whereas the cell line UKF-NB-3rRITA10 mMIV harboured
an A76T mutation that did not result in a loss of p53 function
and remained sensitive to nutlin-3-induced anticancer effects
and nutlin-3-induced p53 activation. In accordance, a pre-
vious study performed in a yeast system had shown that the
transactivation capacities of A76T-mutated p53 do not differ
from those of wild-type p53.11 Thus, this mutation does not
appear to result from a selective pressure favouring a loss of
p53 function. These findings reveal a striking difference
between two drugs that disrupt the Mdm2/p53 interaction with
only nutlin-3 but not RITA promoting inactivating de novo
mutations of p53.

A number of different factors may contribute to the
observed differences in the potential of nutlin-3 and RITA to
induce p53 mutations. RITA induces a p53 response in UKF-
NB-3 cells but not in the RITA-adapted UKF-NB-3 sub-line
UKF-NB-3rRITA10 mM indicating that development of resis-
tance to RITA resistance involves the establishment of
mechanisms that render RITA-resistant cells insensitive to
RITA-induced p53 activation. Re-establishment of wild-
type p53 expression in the G245C p53-mutated nutlin-3-
adapted UKF-NB-3 sub-line UKF-NB-3rNutlin10 mM had been
shown previously to re-sensitise this cell line to nutlin-3.7

Here, re-establishment of wild-type p53 expression in

UKF-NB-3rNutlin10 mM cells also re-sensitised this cell line
to RITA further supporting a role of p53 activation in the
anticancer activity of RITA in the investigated model.

In comparison to nutlin-3, however, RITA induced a less
pronounced p53 response and the selection pressure towards
mutant, non-functional forms of p53 might correlate with the
extent of p53 activation. Moreover, RITA was shown to
reactivate mutated forms of p53.13 Although we did not detect
p53 reactivation in G245C p53-mutated UKF-NB-3rNutlin10 mM

cells by RITA treatment, RITA may reactivate other mutant
p53 forms and not favour their emergence and/or selection.
Differences in the effects on other signalling pathways may
also contribute to the observed discrepancies in the induction
of p53 mutations. Although RITA targets p53 directly, nutlin-3
also interferes with the interaction of MDM2 and other
molecules than p53.14,15 Only RITA, but not nutlin-3, inter-
fered with the interaction of p53 and 53BP1 in a yeast assay.16

Notably, although G245C p53-mutated UKF-NB-3rNutlin10 mM

cells showed some cross-resistance to RITA, higher RITA
concentrations induced caspase-dependent apoptosis in this
cell line.

In previous studies, nutlin-3-adapted cancer cells consis-
tently displayed a multi-drug-resistance phenotype and
decreased sensitivity to irradiation.7,8 Here, all 10 investigated
p53 wild-type and p53-mutated nutlin-3-adapted cell lines
showed substantially decreased sensitivity to VCR and
irradiation. In all, 9 out of 10 nutlin-3-adapted UKF-NB-3
sub-lines were also less sensitive to CDDP treatment than
UKF-NB-3. In contrast, only 2 out of 11 RITA-adapted cell
lines displayed a reduced sensitivity to VCR (although to a
lesser extent than the nutlin-3-adapted cell lines) and only 3 to
CDDP. Although the RITA-adapted UKF-NB-3 sub-lines were
less sensitive to irradiation than UKF-NB-3, their radiation
sensitivity remained substantially higher than that of the
nutlin-3-adapted cell lines. In general, the multi-drug resis-
tance phenotype observed in nutlin-3-adapted cells appears
to be more similar to the resistance phenotype observed in
cytotoxic drug-adapted cells than the low-level resistance
found in RITA-adapted cells. Moreover, 2 out of 11 RITA UKF-
NB-3 sub-lines regained sensitivity to RITA after cultivation for
10 passages in the absence of RITA, whereas all nutlin-3-
resistant sub-lines remained nutlin-3 resistant.
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Figure 4 Hierarchical cluster analysis based on transcriptomics data of UKF-NB-3 and UKF-NB-3 sub-lines adapted to RITA- or nutlin-3. Each cell line was analysed
in triplicate
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Changes in the expression of apoptosis-related proteins
could contribute to the generally enhanced resistance
phenotype of nutlin-3-adapted UKF-NB-3 cells. In UKF-NB-
3rNutlin10 mM cells, multiple antiapoptotic changes were
detected. UKF-NB-3rNutlin10 mM cells were characterised by
(in comparison to UKF-NB-3 and UKF-NB-3rRITA10 mM) higher
levels of the antiapoptotic proteins cIAP1, Bcl-2, Mcl-1, and
survivin. In contrast, across the pro- and antiapoptotic
proteins tested, UKF-NB-3rRITA10 mM cells exhibited only
enhanced expression of cIAP1 and cIAP2 in comparison to
UKF-NB-3.

Transcriptomics analyses showed that the RITA-adapted
sub-lines are more closely related to the parental UKF-NB-3
cell line than the nutlin-3-adapted cell lines. This also appears
to correlate with the observed sensitivity to chemotherapeutic
agents and irradiation. The RITA-adapted cells resemble
more closely the sensitive UKF-NB-3 phenotype than the
multi-drug resistance phenotype associated with nutlin-3
adaptation.

Finally, all RITA-adapted cell lines remained nutlin-3-
sensitive. Accordingly, nutlin-3 induced a substantial p53
response and caused caspase activation and apoptosis in
UKF-NB-3rRITA10 mM cells. Moreover, four out of six nutlin-3-
adapted sub-lines of the RITA-adapted p53 wild-type cell line
UKF-NB-3rRITA10 mM harboured p53 mutations. However, five
out of ten nutlin-3-adapted UKF-NB-3 sub-lines exhibited
decreased sensitivity to RITA treatment. p53 mutations
appear to favour RITA resistance as four out of five nutlin-3-
adapted cell lines that were less sensitive to RITA harboured
p53 mutations.

In conclusion, our study reveals a striking difference
between the two investigated p53 activators nulin-3 (i.e.,
under clinical investigation for the treatment of solid tumours
and leukaemia in phase I trials2) and RITA (i.e., under
preclinical investigation as anticancer drug2). Whereas
adaptation of wild-type p53 expressing UKF-NB-3 cells to
nutlin-3 resulted in the emergence of p53 mutations, UKF-NB-
3 cells adapted to RITA retained functional p53. Consistently,
the RITA-adapted cell lines stayed sensitive to nutlin-3.
Moreover, RITA-adapted cells remained generally sensitive
to chemotherapy and displayed a substantially lower degree
of resistance to irradiation. Again, this is very different to
nutlin-3 adaptation that generally and independently of the
establishment of a p53 mutation results in a multi-drug-
resistance phenotype and decreased sensitivity to irradiation.
These data demonstrate that drugs that are supposed to
share closely related modes of action (i.e., interference with
the interaction of p53 and MDM2) may substantially differ in
their effects on cancer cells. Moreover, the use of RITA rather
than nutlin-3 for first-line treatment appears favourable
because a developing resistance to RITA seems to leave
open a larger number of additional treatment options.

Materials and Methods
Drugs. Nutlin-3 was purchased from Selleck Chemicals via BIOZOL GmbH
(Eching, Germany). VCR and CDDP were obtained from TEVA GmbH (Radebeul,
Germany). RITA was received from Merck Chemicals (Darmstadt, Germany).

Cell lines. The N-myc-amplified neuroblastoma cell line UKF-NB-3 was
established from stage 4 neuroblastoma patients.9 The nutlin-3-resistant sub-
lines and the cytotoxic drug-adapted sub-lines (UKF-NB-3rCDDP1000, adapted to

CDDP; UKF-NB-3rDOX20, DOX; UKF-NB-3rMEL2000, MEL; UKF-NB-3rVCR10,
VCR) were derived from the resistant cancer cell line collection and had been
established as described.7,9,17 UKF-NB-3 cells were adapted to growth in the
presence of RITA by continuous exposure to the increasing RITA concentrations
by described methods.7,9,17

All cells were propagated in Iscove’s modified Dulbecco’s medium supplemented
with 10% foetal bovine serum, 100 IU/ml penicillin and 100 mg/ml streptomycin at
37 1C. Cells were routinely tested for mycoplasma contamination and authenticated
by short tandem repeat profiling.

Viability assay. Cell viability was tested by the MTT dye reduction assay after
120 h incubation modified as described before.7,9,17

Irradiation procedure. A total of 104 cells were irradiated at room
temperature in 96-well cell culture plates (Greiner, Bio-ONE GmbH, Frickenhausen,
Germany) with single doses of X-rays ranging from 1 to 10 Gy using a linear
accelerator (SL 75/5, Elekta, Crawley, UK) with 6 MeV photons/100 cm focus–surface
distance with a dose rate of 4.0 Gy/min. Sham-irradiated cultures were kept at room
temperature in the X-ray control room while the other samples were irradiated.

Western blot. Cells were lysed in Triton X-sample buffer and separated by
SDS-PAGE. Nuclear extract were prepared using the Nuclear Extract Kit (Active
Motif, Carlsbad, CA, USA) following the manufacturer’s instruction. Proteins were
detected using specific antibodies against b-actin (BioVision via BioCat GmbH,
Heidelberg, Germany), Bcl-2, Bcl-XL, Mcl-1, Bax, XIAP, cIAP1, phosphorylated
p53 (ser15), cPARP (Asp214), PUMA (all from Cell Signaling via New England
Biolabs, frankfurt am Main, Germany), cIAP2 (Millipore, Schwalbach, Germany),
survivin (R&D, Wiesbaden, Germany), and p53 (Enzo Life Sciences, Lörrach,
Germany) and were visualised by enhanced chemiluminescence using a
commercially available kit (Amersham, Freiburg, Germany).

Caspase 3/7 activation. Caspase activation was measured using the
Caspase-Glo 3/7 Assay (Promega, Mannheim, Germany) following the
manufacturer’s instructions.

Mutation analysis of p53. TP53 gene sequencing on cDNAs was
performed using the following four pairs of primers: TP53 Ex2-3-f 50-GTGAC
ACGCTTCCCTGGAT-30 and TP53 Ex2-3-r 50-TCATCTGGACCTGGGTCTTC-30;
TP53 Ex4-5-f 50-CCCTTCCCAGAAAACCTACC-30 and TP53 Ex4-5-r 50-CTC
CGTCATGTGCTGTGACT-30; TP53 EX6-7f 50-GTGCAGCTGTGGGTTGATT-30

and TP53 Ex6-7r 50-GGTGGTACAGTCAGAGCCAAC-30; Tp53 Ex8-9-f 50-CCT
CACCATCATCACACTGG-30 and TP53 Ex8-9-r 50-GTCTGGTCCTGAAGGGT
GAA-30. In addition all cell lines were examined for TP53 mutations by sequence
analysis of genomic DNA as described previously.18 PCR was performed as
described before.18 Each amplicon was sequenced bidirectionally.

Transcriptomics. Triplicates of UKF-NB-3, UKF-NB-3rNutlin10mMII, UKF-NB-
3rNutlin10mMV, UKF-NB-3rNutlin10mMVI, UKF-NB-3rNutlin10mMVIII, UKF-NB-
3rRITA10mMII, UKF-NB-3rRITA10mMIII, and UKF-NB-3rRITA10mMIV cells were
analysed for global cellular gene expression at the mRNA level using
Human Gene 1.1 ST microarrays (Affymetrix, Santa Clara, CA, USA) by
the Kompetenzzentrum Fluoreszente Bioanalytik, Universität Regensburg
(Regensburg, Germany). mRNA was isolated using the RNeasy kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.

Expression data were processed using the R/bioconductor packages ‘gcrma’ and
‘limma’ (www.r-project.org/; www.bioconductor.org/) in order to detect differentially
expressed genes.19 The results were corrected for multiple testing to control the
FDR using the approach of Benjamini and Hochberg.20 Hierarchical clustering
analysis was also performed using R.
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