
Cooperative role of RanBP9 and P73 in
mitochondria-mediated apoptosis
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Mitochondrial dysfunction and synaptic damage are critical early features of Alzheimer’s disease (AD) associated with amyloid b

(Ab) and s. We previously reported that the scaffolding protein RanBP9, which is overall increased in AD, simultaneously
promotes Ab generation and focal adhesion disruption by accelerating the endocytosis of APP and b1-integrin, respectively.
Moreover, RanBP9 induces neurodegeneration in vitro and in vivo and mediates Ab-induced neurotoxicity. However, little is
known regarding the mechanisms underlying such neurotoxic processes. Here, we show that RanBP9 induces the loss of
mitochondrial membrane potential and increase in mitochondrial superoxides associated with decrease in Bcl-2, increase in Bax
protein and oligomerization, fragmentation of mitochondria, and cytochrome c release. RanBP9-induced neurotoxic changes are
significantly prevented by the mitochondrial fission inhibitor Mdivi-1 and by classical inhibitors of the mitochondrial apoptosis,
XIAP, Bcl-2, and Bcl-xl. RanBP9 physically interacts with the tumor suppressor p73 and increases endogenous p73a levels at
both transcriptional and post-translational levels;moreover, the knockdown of endogenous p73 by siRNA effectively blocks
RanBP9 and Ab1-42-induced mitochondria-mediated cell death. Conversely, siRNA knockdown of endogenous RanBP9
also suppresses p73-induced apoptosis, suggesting that RanBP9 and p73 have cooperative roles in inducing cell death. Taken
together, these finding implicate the RanBP9/p73 complex in mitochondria-mediated apoptosis in addition to its role in
enhancing Ab generation.
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The accumulations of amyloid b (Ab) peptide and hyper-
phosphorylated t are the major pathological hallmarks
of Alzheimer’s disease (AD). Mounting evidence clearly
indicates that mitochondrial dysfunction is a critical early com-
ponent of AD and related neurodegenerative disorders.1–3

Specifically, Ab contributes to neurodegeneration through
activation of intrinsic apoptotic pathways involving mito-
chondria.4–6 It has been reported that Ab localizes to
mitochondrial membrane and impairs mitochondrial functions
through interacting with mitochondrial proteins, disrupting
electron-transport chain and increasing mitochondrial ROS
products.7–9 A recent study also demonstrated early deficits in
synaptic mitochondria, Ab accumulation within mitochondria
prior to extracellular Ab deposition, and impaired axonal
transport of mitochondria in mutant APP transgenic mice.10

Mitochondria-mediated apoptosis is the best known
intrinsic apoptotic pathway. Impaired mitochondrial function
is associated with the aging process and prevalent age-
related diseases including AD.11,12 Conversely, perturbation
in mitochondria-mediated apoptosis has a critical role in
oncogenic processes and downstream effects of tumor

suppressor proteins such as p53 and p73. Cellular stress
from DNA damage, loss of cell survival factors or defective cell
cycle promotes the accumulation of pro-apoptotic proteins,
such as Bax, Bak, Noxa, and puma.13 Meanwhile, anti-
apoptotic proteins such as Bcl-2 and Bcl-xl prevent apoptosis
by inhibiting the action of pro-apoptotic proteins.14,15 Accord-
ingly, when the balance of activity between pro- and anti-
apoptotic members is upset, the permeability of mitochondrial
membrane is lost and mitochondrial reactive oxygen species
(ROS) is induced.16,17 Apoptogenic proteins like cytochrome c
or apoptotic inducing factors are then released to the cytosol,
which activate pro-caspases to induce apoptosis.18

We recently demonstrated that the scaffolding protein
RanBP9 interacts with the cytoplasmic tails of LRP, APP
and BACE1, and functions as a scaffold upon which APP is
brought together with BACE1 and LRP. Such interactions of
RanBP9 promote the endocytosis of APP and strongly
increase BACE1 cleavage of APP to generate Ab in cultured
cells and in vivo.19,20 In addition, a 60-kD proteolytic fragment
of RanBP9 is robustly increased in the brains of AD patients,
and this fragment strongly potentiates Ab generation via
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BACE1 processing of APP.21 We also recently demonstrated
that RanBP9 functions to inhibit cell adhesion by accelerating
the endocytosis of b1-integrin complexes22 and promotes
apoptosis at least in part by activating the actin- and mito-
chondria-associated protein cofilin.23 Indeed, RanBP9 protein
levels were increased four-fold in mutant APP transgenic
mice, and RanBP9 transgenic mice demonstrated signi-
ficantly increased synapse loss, neurodegeneration, gliosis
and spatial memory deficits,23 demonstrating a link to AD and
neurodegeneration.24

Consistent with these observations, a recent study showed
that RanBP9 also exerts pro-apoptotic activity in DNA
damage-induced apoptosis by regulating Bax and Bcl-2
protein levels in mitochondria.13 It has also been reported
that the physical association of RanBP9 with the C-terminus of
the tumor suppressor protein p73a modulates exogenously
expressed p73a levels and nuclear translocation of
RanBP9.25 Moreover, it has been shown that p73 can induce
apoptosis via nuclear and non-nuclear pathways, the latter
involving direct translocation into mitochondria.26 However,
the mechanism of RanBP9-induced apoptosis, the involve-
ment of mitochondria in such process, and the functional
role of the RanBP9/p73 complex are not well understood.
In this study, we found that RanBP9 together with p73 induce
aberrant changes in mitochondria (MMP, superoxide levels,
apoptotic proteins & fission) and induce apoptosis that depend
on their cooperative actions. Such results implicate the

critical role of the RanBP9/p73 pathway in the regulation of
mitochondria-mediated apoptosis during neurodegenerative
processes.

Results

Excessive RanBP9 induces mitochondrial membrane
permeability and promotes apoptosis in mouse hippo-
campal HT22 cells. It has been reported that overexpres-
sion of RanBP9 can increase the activation of caspases and
induce cell death in Hela cells.13 Consistent with this
observation, we also showed that RanBP9 induces neuro-
degeneration in vivo and mediates Ab-induced toxicity.23 In
HT22 cells transiently transfected with RanBP9 under
conditions of 10% fetal bovine serum (FBS), we detected
only a marginal increase in lactate dehydrogenase (LDH)
release (Figure 1a). However, when cells were stressed in
2% FBS, RanBP9-induced LDH release was marked
accentuated (Figure 1a). To detect early and late stages
of apoptosis, we used the Annexin-V/propidium iodide (PI)
cell death assay under 10% FBS conditions. The bottom
left quadrant indicates healthy cells, whereas the bottom
right and upper right quadrants indicate cells in early and late
stages of apoptosis, respectively, in this assay (Figure 1b).
Indeed, RanBP9 transfection reduced healthy cells and
increased cells in early but not late stages of apoptosis in
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Figure 1 RanBP9 promotes cell death associated with increased mitochondrial superoxides and loss of MMP. (a) Graph shows LDH release in vector- or RanBP9-
transfected cells cultured with 10 and 2% fetal bovine serum (FBS) (n¼ 3 each). Error bars represent S.E.M. (b) Vector- or RanBP9-transfected HT22 cells were cultured in
10% FBS. After 48 h, cells were subjected to Annexin V and PI staining followed by flow cytometry. A representative experiment from at least three independent experiments is
shown. (c) HT22 cells were transfected with vector or RanBP9. After 36 h, JC-1 staining was observed by fluorescence microscopy. Red and green fluorescence represent
aggregated and monomeric JC-1. JC-1 staining was also observed by flow cytometry. Note that the R2 area shows the accumulation of monomeric JC-1 in RanBP9-
transfected cells. (d) MitoSOX Red staining was observed by fluorescence microscopy (upper) and flow cytometry (lower). Note the increase in the MitoSOX red signal in
RanBP9 transfected cells. Representative experiments from at least three independent experiments are shown
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10% FBS (Figure 1b). Therefore, RanBP9 appears not to
induce overt cell death under normal culture conditions but
increases the vulnerability of cells to undergo cell death
under stressed conditions.

As mitochondrial oxidative stress and mitochondrial mem-
brane potential (MMP) are general indicators of mitochondrial
health, we next utilized the MitoSox Red, an indicator of
mitochondrial superoxides, and JC-1, an indicator of MMP, to
stain transiently transfected HT22 cells grown in 10% FBS.
Indeed, a consistent feature of the early stages of apoptosis is
an increase in mitochondrial membrane permeability and loss
of MMP.27 As the JC-1 dye exhibits potential-dependent
accumulation in mitochondria and fluorescence shift from
green (529 nm) to red (590 nm), mitochondrial depolarization
is indicated by a decrease in red/green fluorescence intensity
ratio. RanBP9 transfected HT22 cells displayed greatly
decreased MMP as evidenced by the reduction and increase
in red and green JC-1 fluorescence, respectively, compared
with vector-transfected cells (Figure 1c, upper panels).
Examination of red fluorescence by FACS analysis of JC-1
also demonstrated consistent findings, indicating that
RanBP9 overexpression impairs MMP under conditions that
do not exert overt cell death (Figure 1c, lower panels).
MitoSox Red staining to measure mitochondrial superoxide
levels also demonstrated much stronger red fluorescence in
RanBP9 versus vector-transfected cells, indicating increased
production of mitochondrial ROS (Figure 1d, upper panels).
Further examination of MitoSox Red by FACS analysis
also demonstrated similar results, with RanBP9-transfected
cells displaying median fluorescence intensity of 111 versus
91 in vector-transfected cells (Figure 1d, lower panels). These
results taken together indicate that RanBP9 increases the
vulnerability of cells to undergo apoptosis and mitochondrial
dysfunction even under conditions where overt cell death is
not readily detectable.

Overexpression of RanBP9 alters Bax/Bcl2 protein ratio,
promotes Bax oligomerization, and induces cytochrome
c release. It has been shown that knockdown of RanBP9
decreases mitochondrial Bax and increases Bcl2 in Hela
cells.13 To determine whether corresponding changes are
similarly seen after RanBP9 overexpression in brain-derived
cells, we analyzed Bax and Bcl2 protein levels after control
vector or RanBP9 transfection in HT22 cells. Indeed, Bcl2
levels were markedly decreased after RanBP9 transfection
either under 10 or 2% FBS culture conditions, and Bax
levels were moderately increased in 10% FBS and further
increased in 2% FBS (Figure 2a). As transfection efficiency
could dilute the effects of RanBP9 observed from total cell
lysates, we also transfected EGFP or EGFP-RanBP9 and
visualized Bax staining in EGFP-positive cells. Under these
conditions, little to no Bax fluorescence was observed
in EGFP-transfected cells (Figure 2b). However, EGFP-
RanBP9-transfected cells demonstrated significantly higher
levels of Bax immunoreactivity, such that Bax immuno-
fluorescence intensity in EGFP-RanBP9-transfected cells
increased more than 2.5-fold compared with that of control
EGFP-transfected cells in both 2 and 10% FBS conditions
(Figures 2b and c). Not all cells that were positive for EGFP-
RanBP9 were positive for Bax, but most cells positive for

Bax were also positive for EGFP-RanBP9, suggesting cells
in different stages of apoptosis induced by RanBP9
(Figure 2b). To determine whether RanBP9-induced
increase in Bax protein might be due to increased Bax trans-
cription, we next subjected vector- and RanBP9-transfected
cells in 10 and 2% FBS to real-time quantitative reverse
transcription-PCR (RT-qPCR). However, we observed no
significant differences between vector and RanBP9-trans-
fected cell in Bax mRNA levels, indicating that the increase
in Bax protein is not due to a transcriptional mechanism
(Figure 2d). To determine whether overexpression of
RanBP9 induces Bax oligomerization, we applied anti-Bax
antibody to detect monomer, dimer, and tetramer of the Bax
protein. Both the 23-kD monomer and SDS-resistant 46-kD
dimer were significantly increased in RanBP9-transfected
cell compared with vector-transfected cells (Figure 2e),
indicating that RanBP9 promotes Bax oligomerization lead-
ing to increased mitochondrial membrane permeability.

Higher Bax/Bcl2 ratio, increased Bax oligomerication, and
decreased MMP lead to the release of cytochrome c, a pro-
apoptotic protein that promotes caspase activation and
initiation of mitochondria-mediated apoptosis. To determine
whether overexpression of RanBP9 induces the release of
cytochrome c, we first subjected EGFP or EGFP-RanBP9-
transfected cells to immunofluorescence for cytochrome c
(red) in cells cultured in the normal 10% FBS condition.
Analysis of the double green/red fluorescent images showed
that while EGFP-transfected cells largely contained cyto-
chrome c in discrete structures resembling mitochondria,
EGFP-RanBP9-transfected cells also showed cytochrome c
diffusely in the cytoplasm (Figure 2f). Further biochemical
isolation of mitochondria and cytosolic fractions also demon-
strated similar findings. Specifically, RanBP9-transfected
cells contained reduced and increased cytochrome c in
cytosolic and mitochondrial fractions, respectively, indicating
its release from mitochondria to cytosol (Figure 2g). No
cytosolic cytochrome c was detected in control vector-
transfected cells (Figure 2g). Surprisingly, RanBP9 was
strongly detected in the isolated mitochondrial fraction
together with the inner mitochondrial membrane marker
Timm50 (Figure 2g), suggesting a potential direct role of
RanBP9 in mitochondria. Taken together, these data indicate
that RanBP9 induces mitochondrial dysfunction and renders
cells more vulnerable to apoptosis by increasing mitochon-
drial ROS, decreasing MMP, increasing the Bax/Bcl-2 ratio,
promoting Bax oligomerization, and releasing cytochrome c
release from mitochondria.

RanBP9-induced fragmentation of mitochondria and
apoptosis is partially prevented by inhibition of mito-
chondrial fission. We next determined whether RanBP9
alters mitochondrial morphology under conditions of 10 and
2% FBS. HT22 cells were cotransfected with vector control
or Flag-RanBP9 and Mito-dsRed to assess the shape and
length of mitochondria. Compared with vector-transfected
cells, RanBP9-transfected cells displayed marked fragmen-
tation of mitochondria in both 10 and 2% FBS, although 2%
FBS further increased mitochondrial fragmentation in both
control- and RanBP9-transfected cells (Figure 3a). Quantita-
tion of mitochondrial length indeed demonstrated more than

RanBP9 and p73 in apoptosis
T Liu et al

3

Cell Death and Disease



two-fold shorter mitochondria in RanBP9- versus control-
transfected cells in both 10 and 2% FBS conditions
(Figure 3b). The process of mitochondrial fission mediated
by DRP1 not only participates in regulating mitochondrial
morphology but is also important for the apoptotic process.28

It has been reported that DRP1 inhibitor mdivi-1 inhibits both
mitochondrial fission and apoptosis.29 To determine whether
RanBP9-induced mitochondrial fragmentation and apoptosis
might be in part due to increased mitochondrial fission, we
applied mdivi-1 to control and RanBP9-transfected cells in
2% FBS and monitored both mitochondrial fragmentation
and cell death. Indeed, mdivi-1 significantly prevented
mitochondrial fragmentation (Figure 3c) and apoptosis
(Figure 3d) induced by RanBP9, indicating that the process
of mitochondrial fission is an integral component of RanBP9-
induced cell death.

Anti-apoptotic proteins XIAP, Bcl-2 and Bcl-xl suppress
RanBP9-induced toxicity. X-linked inhibitor of apoptosis
protein (XIAP) inhibits apoptotic cell death by inhibiting
caspases 3,7 and 9, the latter that is activated by cytochrome
c release from mitochondria.30 Both Bcl-2 and Bcl-xl are
mitochondrial proteins that suppress apoptosis by inhibiting
mitochondrial membrane permeability and cytochrome c
release.31 As RanBP9 promoted the release of cytochrome
c and induced mitochondrial dysfunction, we next assessed
whether XIAP, Bcl-2 and Bcl-xl can inhibit RanBP9-induced
cell death. Therefore, HT22 cells were cotransfected with
vector or RanBP9 together with XIAP, Bcl-2 or Bcl-xl for 48 h
and subjected to 2% FBS treatment for 24 h. Under these
conditions, RanBP9 increased both early (lower right quad-
rant) and late apoptotic (upper right quadrant) cells as
assessed by Annexin V/PI staining followed by FACS
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Figure 2 Increased Bax/Bcl-2 ratio and cytochrome c release in RanBP9-transfected cells. HT22 cells were transfected with vector or RanBP9 for 24 h, and cells were
incubated in medium containing 10 or 2% FBS for another 24 h. (a) Equal protein amounts of cell lysates were subjected to immunoblotting for Flag, Bax, Bcl-2. Note the
relative decrease in Bcl-2 and increase in Bax levels in RanBP9-transfected cells. (b) Representative images of EGFP, EGFP-RanBP9, and Bax immunofluorescence.
(c) Quantitation of Bax immunofluorescence intensity from EGFP or EGFP-RanBP9-transfected cells (n¼ 4 each). Error bars represent S.E.M. (d) Quantitative RT-PCR
analysis of Bax mRNA levels normalized to GAPDH (n¼ 4 each). Error bars represent S.E.M. (e) HT22 cells were transfected with vector or RanBP9 for 48 h, and equal
protein amounts of cell lysates were subjected to immunoblotting for Bax. Note the increase in SDS-resistant 46-kD dimeric bax induced by RanBP9 transfection. (f) Thirty-six
hours after transfection of EGFP or EGFP-RanBP9, HT22 cells cultured in 10% FBS were subjected to immunofluorescence for cytochrome c. A representative image
shows widespread diffuse cytochrome c staining in EGFP-RanBP9-transfected cells, suggestive of release to cytosol. (g) Thirty-six hours after transfection of EGFP or
EGFP-RanBP9, HT22 cells cultured in 10% FBS were subjected to biochemical isolation of mitochondria and cytosol. Representative experiment shows the localization
of RanBP9 in both cytosol and mitochondria as well as release of cytochrome c from mitochondria to cytosol in RanBP9-transfected cells. Timm50 was used as a marker
of mitochondria
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analysis (Figures 4a and b). However, XIAP, Bcl-2 and Bcl-xl
were all highly effective in suppressing RanBP9-induced
apoptosis (Figures 4a and b), further supporting the notion
that RanBP9 induces cell death via a mitochondria- and
caspase-dependent apoptotic pathway.

RanBP9 enhances transcriptionally active p73 levels by
both transcriptional and post-translational mechanisms.
It has been reported that RanBP9 physically associates
with p73a and increases p73a levels,25 though the precise
mechanism of such action is unclear. p73, much like its
cousin p53, functions as a tumor-suppressor protein and
induces apoptosis via both transcriptional and mitochondrial
pathways.26 The p73 protein and its cleaved fragments have
been detected in mitochondria during apoptosis induced
by tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL).32 Consistent with previous observations, we detec-
ted the physical association between RanBP9 and p73a
in coimmunoprecipitation experiments (Figure 5a). Indeed,
RanBP9 overexpression increased the total amount of
endogenous p73 protein (Figure 5b) and also enhanced the
level of cotransfected p73a in biochemically isolated mito-
chondria (Figure 5c). RanBP9 was again detected in isolated
mitochondrial fractions (Figures 5b and c), and the N-term-
inal 60-kD fragment (N60) of RanBP9 that is increased in
AD brains, was preferentially localized to mitochondria (not
shown). To determine whether RanBP9 stabilizes endo-
genous p73, HT22 cells were cotransfected with vector

control or RanBP9, and cells were subjected to cyclo-
heximide (CHX) chase assay over 4 h. Indeed, RanBP9
markedly increased the half-life of endogenous p73, indicat-
ing the stabilization of p73 at the post-translational level. As
previous studies have shown that RanBP9 can also act in the
nucleus as a transcriptional co-regulator,33–35 we also
determined whether RanBP9 alters the level of endogenous
p73 mRNA. Quantitative real-time reverse transcription (RT)
PCR analysis showed that RanBP9 increased the level
of p73 mRNA by B1.7-fold in HT22 cells (Figure 5e), indi-
cating that RanBP9 controls p73 levels and its mitochondrial
content, both transcriptionally and post-translationally. To
determine whether RanBP9 increases transcriptionally active
p73, we also assessed the levels of p21 and puma mRNAs,
the former activated by p53 and the latter activated by
both p53 and p73. Quantitative real-time RT-PCR analysis
demonstrated that RanBP9 overexpression significantly
increased puma but not p21 mRNA levels, consistent with
a specific increase in transcriptionally active p73 but not p53
(Figures 5e and f).

Endogenous RanBP9 and p73 cooperate to induce mito-
chondrial dysfunction and apoptosis. Induction of p73 is
expected to induce mitochondrial dysfunction and apoptosis.
To determine whether p73 is essential for RanBP9-induced
toxicity, HT22 cells were cotransfected with vector control
or RanBP9 together with control siRNA (si NC) or pan p73
siRNA (pan-si p73) in 10% FBS. As expected, RanBP9
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increased endogenous p73 and Bax and decreased Bcl-2
levels without altering b-actin (Figure 6a). However, cotrans-
fection of RanBP9 with p73 siRNA completely reversed these
effects of RanBP9 (Figure 6a). Likewise, p73 siRNA restored
MMP (Figure 6b, lower panels), suppressed apoptosis
(Figure 6b, upper panels), and reversed mitochondrial
fragmentation (Figures 6c and d) induced by RanBP9. To
determine whether RanBP9 might also be an essential
component of p73a-induced cell death, HT22 cells were

cotransfected with vector control or p73a with or without
RanBP9 siRNA and subjected to 2% FBS treatment for 24 h.
As expected, p73a transfection increased Bax, decreased
Bcl2, and increased both early and late stages of apoptosis
(Figures 6e and f). Surprisingly, knockdown of RanBP9 also
largely reversed the increase in Bax, decrease in Bcl-2, and
increase in cell death induced by p73a (Figures 6e and f),
suggesting that RanBP9 and p73a function cooperatively to
induce mitochondrial dysfunction and cell death.
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Figure 5 RanBP9 physically interacts with p73 and increases p73 levels by both protein stabilization and increased transcription. (a) Flag-RanBP9 was cotransfected with
or without HA-p73 in HT22 cells, and equal protein amounts of cell lysates were immunoprecipitated with anti-FLAG M2 antibody followed by immunoblotting for anti-HA
antibody to detect HA-p73. (b) Increase in endogenous p73 after Flag-RanBP9 transfection in HT22 cells. Flag-RanBP9 and endogenous p73 were detected using M2 and
anti-p73 antibodies, respectively. A representative experiment is shown. (c) p73a was cotransfected with vector or RanBP9 in HT22 cells. After 48 h, mitochondria were
isolated, and equal protein amounts of lysates were immunoblotted using anti-FLAG M2, anti-p73 and anti-timm50 antibodies. (d) Vector and RanBP9 were transfected in
HT22 cells. After 48 h, cells were treated with 2 mg/ml cycloheximide (CHX) for 0, 1, 2 and 4 h. Equal protein amounts of cell lysate were subjected to immunoblotting using anti-
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Endogenous p73 is essential for Ab- and RanBP9-
induced apoptosis and mitochondrial dysfunction in
primary hippocampal neurons. To determine whether
RanBP9 functions in a similar p73-dependent manner in
inducing cell death in neurons, primary hippocampal neurons
isolated from P0 pups of RanBP9 transgenic (TG) and
wildtype (WT) littermates were cultured in DIV14. Immuno-
fluorescence analysis of endogenous p73 demonstrated a
B2.5-fold increase in p73 fluorescence intensity in RanBP9
transgenic neurons compared with nontransgenic wild-type
neurons (Figures 7a and b). M2 staining for Flag-RanBP9
indeed demonstrated expression of the RanBP9 transgene in
primary hippocampal neurons (Figure 7a). We also carried
out immunofluorescence staining for cytochrome c. Prior to
fixation, neurons were treated with 0.1% saponin to release

cytosolic content and were then subjected to cytochrome c
immunofluorescence staining. Consistent with observations
in HT22 cells, RanBP9 TG neurons demonstrated signifi-
cantly reduced cytochrome c fluorescence intensity (Figures
7c and d), indicative of its release from mitochondria. More-
over, RanBP9 TG neurons also showed significantly reduced
red JC-1 aggregates and increased green JC-1 monomers
(Figures 7e and f), indicative of reduced MMP.

To induce apoptotic cell death, DIV7 primary neurons were
treated with 1 mM Ab1-42 for 24 h with or without control siRNA
(siNC) or pan-p73 siRNA (siRNAp73) transfection, and cell
were then subjected to Annexin V (red) and DAPI staining
(blue). Under these conditions, RanBP9 TG neurons demon-
strated significantly increased percentage of Annexin V-posi-
tive apoptotic cells compared with WT controls (Figures 7g
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and h). Consistent with observations in HT22 cells, p73 siRNA
significantly prevented the increase in apoptosis induced by
RanBP9 and Ab1-42 (Figures 7g and h). Taken together,
these observations demonstrate that RanBP9 and p73a
function cooperatively likely in a protein complex to mediate
mitochondria-mediated apoptosis in multiple cell types,
including neurons.

Discussion

Mitochondrial dysfunction is widely believed to be an early and
critical component of multiple neurodegenerative diseases,

including AD. Accumulations of Ab and t are both associated
with mitochondrial dysfunction at multiple levels.1–3 We
previously showed that the overall levels of RanBP9 are
elevated in brains of AD patients and in APP transgenic mice
and that increased RanBP9 expression promotes Ab genera-
tion both in cultured cells and in brain (Figure 8).19–21

Furthermore, we demonstrated that RanBP9 induces neuro-
degeneration and synaptic loss associated with spatial
memory deficits and that RanBP9 is essential to mediate
Ab-induced neurotoxicity.23 In this study, we made a series of
novel observations implicating the cooperative role of the
RanBP9/p73 complex in mitochondrial dysfunction and
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apoptosis. First, we showed that RanBP9 induces the loss of
MMP and increased mitochondrial superoxide levels even
under conditions in which overt cell death was not readily
detected. Such changes were associated with increased Bax
level and oligomerization, decreased Bcl-2, and release of
cytochrome c from mitochondria. Second, overexpression of
RanBP9 led to the fragmentation of mitochondria and cell
death, which were significantly reversed by the mitochondrial
fission inhibitor Mdivi-1. Third, RanBP9-induced apoptosis
was efficiently blocked by classical inhibitors of mitochondrial
cell death pathway, XIAP, Bcl-2, and Bcl-xl. Fourth, RanBP9
increased endogenous p73 levels and promoted p73 localiza-
tion in mitochondria at both transcriptional and post-transla-
tional levels. Fifth, RanBP9 increased transcriptionally active
p73 as evidenced by increased transcription of the p73 target

gene, puma. Sixth, knockdown of endogenous p73 by siRNA
effectively blocked RanBP9-induced changes in cell death,
MMP, and mitochondrial fragmentation, indicating that p73 is
an essential component of RanBP9-induced apoptosis.
Seventh, RanBP9 increased p73 levels and cytochrome c
release primary hippocampal neurons, and siRNA knockdown
of p73 also antagonized RanBP9/Ab1-42 induced apoptosis
in primary neurons. Finally, siRNA knockdown of endogenous
RanBP9 was also effective in suppressing p73-induced
apoptosis, suggesting that RanBP9 and p73 have cooperative
roles in inducing cell death. Taken together, these finding
implicate the RanBP9/p73 complex in mitochondrial dysfunc-
tion and apoptotic mechanisms during neurodegeneration.

Previous studies have shown that RanBP9 can exert pro-
apoptotic activity during DNA damage-induced cell death and
that RanBP9 physically associates with p73a and stabilizes
exogenously expressed p73a protein.13,25 In this study, we
found that RanBP9 increases endogenous p73 by protein
stabilization as well as increased transcription of p73 and its
target gene, puma, and that endogenous p73 is essential for
RanBP9-induced apoptosis, mitochondrial fragmentation,
and loss of MMP (Figure 8). Furthermore, RanBP9 itself and
p73 were increased in mitochondria secondary to RanBP9
overexpression. We also recently reported that RanBP9 is
critical for Ab1-42-induced cell death and that RanBP9
activates cofilin,23 an actin-binding protein that regulates
actin dynamics and mitochondrial function.36–38 Indeed,
knockdown of cofilin was able to prevent both RanBP9- and
Ab-induced apoptosis.23 Previous studies have shown that
recombinant p73 or recombinant cofilin alone is capable of
inducing the release of cytochrome c from isolated mitochon-
dria due to increased permeability,32,39 indicating direct
effects on mitochondria. Such findings are entirely consistent
with our observations that RanBP9 overexpression increased
mitochondrial permeability as seen by increased bax oligo-
merization, decreased MMP, associated with a rise in
mitochondrial superoxides. Therefore, RanBP9 appears to
promote apoptosis via both cofilin and p73-dependent
mechanisms, possibly with direct effects on mitochondria.
Although it has been reported that RanBP9 potentiates the
transcriptional activation of the p73-responsive gene,
MDM2,25 we did not detect changes in Bax mRNA levels
despite the increase in Bax protein. Nevertheless, we
confirmed that RanBP9 induces the transcription of another
p73-responsive gene, puma, but not the p53-responsive
gene, p21. It has been demonstrated that even transcription-
ally inactive p73 is capable of inducing apoptosis via a
mitochondrial mechanism.32 Therefore, it is likely that
RanBP9-induced changes in mitochondrial function and
apoptosis can be attributed to both transcriptional (i.e. puma)
and non-transcriptional mechanisms, the latter bearing
directly on mitochondria. Consistent with a previous study
demonstrating the physical association between RanBP9 and
p73a,25 we confirmed this interaction by coimmunoprecipi-
tation studies. Interestingly, we found that knockdown of
RanBP9 by siRNA also largely eliminated the toxic effects of
p73a, suggesting that p73 and RanBP9 function cooperatively
in a protein complex to mediate mitochondrial dysfunction and
cytotoxicity. Whether cofilin might be a component of that
protein complex remains to be determined.
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We found that RanBP9 increased endogenous p73a levels,
increased cytochrome c release, and promoted apoptosis
induced by Ab1-42 treatment in primary hippocampal neu-
rons, which was reversed by p73 pan-siRNA. Although it
has been reported that the N-terminally truncated p73
(DNp73), which promotes cell survival, is a major species
expressed in neurons,40,41 the antibody we used to detect
p73 does not detect DNp73 as it is directed against the
N-terminal 80 residues of p73. Furthermore, the siRNA that
we had used to knockdown p73 targets all forms of p73.
Hence, in primary hippocampal neurons used in our system,
toxic forms of p73 are induced by RanBP9, which when
suppressed by siRNA, render neurons protected against
RanBP9/Ab1-42-induced apoptosis. Indeed, it has been
shown that the toxic p73 species are widely expressed in
adult human brains.42,43 As RanBP9 levels are increased
in AD brains and in brains of APP transgenic mice,21,23 it is
expected that the RanBP9/p73 complex would promote
mitochondrial dysfunction and render neurons more vulner-
able to degeneration. Consistent with this notion, it has been
reported that nuclear p73 accumulates in brains of AD
patients,43 and p73a promotes the phosphorylation of t via a
transcription-dependent mechanism.44 Although the loss of
DNp73 is associated with neurodegeneration and t hyper-
phosphorylation,40,45 it has been shown that Ab increases
p73a immunoreactivity in vivo as well as in cultured primary
neurons and reduces the neuroprotectiveDNp73 isoform.46,47

In view of these observations together with the results of
the current study, we hypothesize that targeting the p73a/
RanBP9 complex and downstream pathway may be promis-
ing therapeutic strategy to simultaneously antagonize neuro-
degeneration and Ab generation.

Materials and Methods
Cell culture. Wide-type and RanBP9 transgenic mice were generated as
previously reported.20,23 Mouse hippocampal primary neurons from P0 pups were
cultured in Neurobasal medium supplemented with 1� B-27 supplement and
1� L-Glutamine (Invitrogen, CA, USA) in a humidified atmosphere of 5% CO2 at
37 1C. The medium was replaced every 2–3 days. Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Thermo Scientific, MA, USA)
supplemented with 10% fetal bovine serum) and 1% penicillin/streptomycin (P/S)
in a humidified atmosphere of 5% CO2 at 37 1C.

Cell death assays. HT22 cells were cultured in DMEM medium with 1%
penicillin/streptomycin and 10% FBS in a 24-well plate. After 24-h incubation,
transfection was performed using lipofectamine 2000 according to the
manufacturer’s instructions. Forty-eight hours after transfection and in the
presence of 10% or 2% FBS for 24 h, 200ml of culture medium were collected and
used in LDH release assays. LDH level was measured with In vitro Toxicology
assay kit (Sigma-Aldrich, MO, USA) by spectrophotometer following the
manufacturer’s instructions. For annexin V/PI cell death assays, the Annexin-V-
FITC and PI Apoptosis Detection Kit (BD Bisosciences) was used, followed by
FACS analysis (FACS Calibur, BD, CA, USA) according to the manufacturer’s
instructions and as previously documented.23 For JC-1 staining and MitoSox Red
staining, after the cells were harvested and washed with PBS, they were stained
with JC-1(Invitrogen) or MitoSox (Invitrogen) Red for 15 min. Cells were washed
once with binding buffer and measured by flow cytometry or captured by
fluorescence microscopy. In primary hippocampal neurons, JC-1 staining was
done for 15 min prior to fixation and detected directly on plates by fluorescence
microscopy. Quantitations were performed by selecting the cellular region of
20–30 cells for each sample and measuring the intensity of green and red signals
using Nikon NIS Elements-AR software. For Annexin V cell death assay, DIV7
neurons were treated with Ab1-42 for 24 h and stained with Annexin V-FITC
followed by DAPI (BD, San Diego, CA, USA).

Immunoblotting and mitochondrial isolation. Cell lysate was lysed
with lysis buffer (50 mM Tris-Cl,150 mM NaCl, 2 mM EDTA and 1% Triton-100) and
total protein concentration was quantified by a colorimetric detection assay (BCA
Protein Assay, Pierce, USA). Equal amounts of protein lysates were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transferred to
Immobilon-P membranes (Millipore Corporation, Bedford, MA, USA). Interested
proteins were probed by primary antibodies and corresponding peroxidase-labeled
secondary antibodies, followed with detection by ECL (Millipore Corporation).
Mitochondria were isolated by Mitochondrial Isolation Kit for Cultured Cells (Thermo
Scientific, IL, USA) according to the manufacturer’s instructions.

Transient transfections. Transient transfections of HT22 cells and 293T
cells with DNA plasmid were carried out using lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA) and Opti-MEM I (Invitrogen). For siRNA transfections, lipo-
fectamine RNAiMAX (Invitrogen) and Opti-MEM I were applied. Four to six hours
following transfections, the medium was replaced with new complete medium.
Generally, cells were incubated 48 h after plasmid transfection and 72 h after
siRNA transfection.

DNA constructs and siRNA. pEGFP-C2-RanBP9 was a kind gift from
Dr. Hideo Nishitani (Kyushu University, Fukuoka, Japan). pcDNA-P3X-Flag-
RanBP9 construct was a gift from Dr. Shim S-K (Yale University School of
Medicine, New Haven, CT, USA). pLHCX RanBP9 and RanBP9-N60 constructs
have previously been described.19 pCMV-XIAP, pcDNA-myc-Bcl2 and pcDNA-
myc-Bcl-xl constructs were gifts from Dr. Ryu Hoon (Boston University, Boston,
USA). RanBP9 siRNA was synthesized by Samchully Pharm (Seoul, Korea)
with the following sequence: sense UCUUAUCAAUACCUGCTT; antisense
GCUGGUAUUGUUGAUAAGATT. Pan-p73 siRNA was synthesized by Biobeer
(Korea) with the following sequence: sense 50-CCAUCCUGUACAACUUCAUGU
G-30, antisense 50-CAUGAAGUUGUACAGGAUGGU G-3. pcDNA-HA-p73a and
DNp73a constructs were generously provided by Dr. Nakagawara (Japan).

Chemicals and antibodies. RanBP9 monoclonal antibody was a generous
gift from Dr. Bianchi (Pasteur Institute, France). Anti-Flag M2 and anti-b-actin
monoclonal antibodies were obtained from Sigma (St. Louis, MO, USA). Anti-Bax
(N-20), anti-Bcl2 (N-19), anti-HA (Y-11), and anti-p73 (H-79) antibodies were
purchased from Santa Cruz (CA, USA). Rabbit anti-cytochrome c antibody was
obtained from Cell Signaling (Danvers, MA, USA). Mouse anti-cytochrome c
antibody (Clone: 6H2.B4) was purchased from BD Pharmingen (MD, USA). Anti-
Timm50 antibody was purchased from Abcam (MA, USA). Secondary antibodies
including Goat Anti-Mouse IgG and Goat Anti-Rabbit IgG were purchased from
Jackson ImmunoResearch (West Grove, PA, USA).

Quantitative real time RT–PCR. Quantitative real-time PCR was
performed with ABI PRISM 7700 Sequence Detection System Instrument and
software (Applied Biosystems, Foster City, CA, USA), using the manufacturer’s
recommended conditions. Total RNA was isolated from transiently transfected
cells (Trizol reagent, Invitrogen, CA), reverse transcribed (Superscript III,
Invitrogen, CA), and subjected to quantitative PCR analysis using Syber green
master mix (Invitrogen, CA). The comparative threshold cycle (Ct) method was
used to calculate the amplification factor, and the relative amount of target
(TAp73) was normalized to GAPDH levels in parallel reactions. The primer
sequences are as follows: Bax—forward 50-CCGGCGAATTGGAGATGAACT-30

and reverse: 50-CCAGCCCATGATGGTTCTGAT-30. TAp73—forward 50-GCGAGG
AGTCCAACATGGAT-30 and reverse 50-GGCACTGCTGAGCAAATTGA-30.
GAPDH—forward 50-TGTGTCCGTCGTGCATCTGA-30 and reverse 50-CCTGCT
TCACCACCTTCTTGA-30. P21—forward 50-GAACTTTGACTTCGTCACGGAGA-30

and reverse 50-CTCCGTTTTCGGCCCTGAGA-30. Puma—forward 50-CTCAGCC
CTCCCTGTCACCA-30 and reverse 50-GGGGAGGAGTCCCATGAAGAGA-30

Immunofluorescence and DAPI staining. Cells were cultured on glass
coverslips coated with 100mg/ml poly-D-lysine. After fixing with 4% paraformalde-
hyde, and permeabilization with 0.2% Triton X-100, cells were stained with specific
primary antibodies and with fluorescence-tagged secondary antibodies. Coverslips
were mounted using Gel/Mount (Biomeda, CA) and observed by fluorescence
or confocal microscopy (Olympus FV10i, Tokyo, Japan). Immunofluorescence
for cytochrome c in primary neurons was performed by briefly treating cells
with 0.01% saponin (5 min on ice) as previously documented,22,48,49 which
generates holes in the plasma membrane without permeabilization, leading to the
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release of cytosolic content. This was followed by fixation and normal immuno-
staining procedures.
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